Aberrant gene expression plays critical roles in the development of colorectal cancer (CRC). Here we show that POTEE, which was identified as a member E of POTE ankyrin domain family, was significantly upregulated in colorectal tumors and predicted poor overall survival of CRC patients. In CRC cells, POTEE could act as an oncogene and could promote cell growth, cell-cycle progression, inhibit apoptosis, and elevates xenograft tumor growth. Mechanically, we used microarray analysis and identified a POTEE/SPHK1/p65 signaling axis, which affected the biological functions of CRC cells. Further evaluation showed that overexpression of POTEE could increase the protein expression of SPHK1, followed by promoting the phosphorylation and activation of p65 protein. Altogether, our findings suggested a POTEE/SPHK1/p65 signaling axis could promote colorectal tumorigenesis and POTEE might potentially serve as a novel biomarker for the diagnosis and an intervention of colorectal cancer.
Non-small cell lung cancer (NSCLC) represents 75-80% of all lung carcinomas, which is the most common cause of death from cancer. Tumour suppressor candidate 3 (TUSC3) is pivotal in many biochemical functions and cytological processes. Dis-regulation of TUSC3 is frequently observed in epithelial cancers. In this study, we observed up-regulated TUSC3 expression at the mRNA and protein levels in clinical NSCLC samples compared with adjacent non-tumorous lung tissues. The expression level of TUSC3 is significantly correlated with tumour metastasis and patient survival. Overexpression of TUSC3 in NSCLC cells led to increased proliferation, migration, and invasion in vitro and accelerated xenograft tumour growth in vivo, while the opposite effects were achieved in TUSC3-silenced cells. Increased GLI1, SMO, PTCH1, and PTCH2 abundance were observed in TUSC3 overexpressed cells using western blotting. Co-immunoprecipitation and immunofluorescence analyses further revealed interaction between TUSC3 and GLI1. In conclusion, our study demonstrated an oncogenic role of TUSC3 in NSCLC and showed that dis-regulation of TUSC3 may affect tumour cell invasion and migration through possible involvement in the Hedgehog (Hh) signalling pathway.
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16-eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c-Myc signaling. Our study unveiled that the SNX16/eEF1A2/c-Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Abbreviations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.