N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in eukaryotes and an important posttranscriptional regulator of gene expression. However, the biological roles of m6A in most insects remain largely unknown. Here, we show that m6A regulates a cytochrome P450 gene (CYP4C64) in the global whitefly pest, Bemisia tabaci, leading to insecticide resistance. Investigation of the regulation of CYP4C64, which confers resistance to the insecticide thiamethoxam, revealed a mutation in the 5′ untranslated region of this gene in resistant B. tabaci strains that introduces a predicted m6A site. We provide several lines of evidence that mRNA methylation of the adenine at this position, in combination with modified expression of m6A writers, acts to increase expression of CYP4C64 and resistance. Collectively, these results provide an example of the epitranscriptomic regulation of the xenobiotic response in insects and implicate the m6A regulatory axis in the development of insecticide resistance.
The superfamily cytochrome P450s is involved in the evolution of insecticide resistance. However, whether CYP4G68, a differentially expressed gene identified from our transcriptomics analysis, confers resistance to the world’s heavily used insecticide class neonicotinoids is unknown. Hence, we explored the role of CYP4G68 in conferring imidacloprid and thiamethoxam resistance in Bemisia tabaci. The species B. tabaci MED developed low-to-high resistance to imidacloprid and thiamethoxam. Exposure to imidacloprid and thiamethoxam significantly increased the expression of CYP4G68. Moreover, quantitative real-time PCR analysis demonstrated that CYP4G68 was remarkably overexpressed in imidacloprid-resistant and thiamethoxam-resistant strains compared to susceptible strains. Further correlation analysis showed that CYP4G68 expression was significantly positively correlated with the associated resistance level in various strains of B. tabaci. These results suggest that the enhanced expression of CYP4G68 appears to mediate imidacloprid and thiamethoxam resistance in B. tabaci. Additionally, silencing CYP4G68 via RNA interference strongly increased the susceptibility of B. tabaci MED to imidacloprid and thiamethoxam. Collectively, this work revealed that CYP4G68 plays a vital role in imidacloprid and thiamethoxam resistance in B. tabaci MED. These findings will not only advance our understanding of the role of P450s in insecticide resistance but also provide a great potential target for the sustainable control of destructive insect pests such as whiteflies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.