Background Invasive candidal infection combined with bacterial bloodstream infection is one of the common nosocomial infections that is also the main cause of morbidity and mortality. The incidence of invasive Candidal infection with bacterial bloodstream infection is increasing year by year worldwide, but data on China is still limited. Methods We included 246 hospitalised patients who had invasive candidal infection combined with a bacterial bloodstream infection from January 2013 to January 2018; we collected and analysed the relevant epidemiological information and used machine learning methods to find prognostic factors related to death (training set and test set were randomly allocated at a ratio of 7:3). Results Of the 246 patients with invasive candidal infection complicated with a bacterial bloodstream infection, the median age was 63 years (53.25–74), of which 159 (64.6%) were male, 109 (44.3%) were elderly patients (> 65 years), 238 (96.7%) were hospitalised for more than 10 days, 168 (68.3%) were admitted to ICU during hospitalisation, and most patients had records of multiple admissions within 2 years (167/246, 67.9%). The most common blood index was hypoproteinemia (169/246, 68.7%), and the most common inducement was urinary catheter use (210/246, 85.4%). Moreover, the most frequently infected fungi and bacteria were Candida parapsilosis and Acinetobacter baumannii, respectively. The main predictors of death prognosis by machine learning method are serum creatinine level, age, length of stay, stay in ICU during hospitalisation, serum albumin level, C-Reactive protein (CRP), leukocyte count, neutrophil count, Procalcitonin (PCT), and total bilirubin level. Conclusion Our results showed that the most common candida and bacteria infections were caused by Candida parapsilosis and Acinetobacter baumannii, respectively. The main predictors of death prognosis are serum creatinine level, age, length of stay, stay in ICU during hospitalisation, serum albumin level, CRP, leukocyte count, neutrophil count, PCT and total bilirubin level.
Melanoma is a malignant tumor caused by melanocytes, 1 and its incidence has been increasing in recent years. Despite the development and application of more treatments, 2,3 the prognosis of melanoma remains poor, 4,5 therefore finding new molecules and developing new biomarkers are needed to improve the prognosis of melanoma patients.Long noncoding RNAs (LncRNAs) are defined as RNAs of more than 200 nucleotides in length with limited protein-coding capacity, 6 in fact, it has been suggested that LncRNAs are involved with many biological processes, and their key role in cell and tumor specificity
Background. Invasive candidiasis is a common cancer-related complication with a high fatality rate. If patients with a high risk of dying in the hospital are identified early and accurately, physicians can make better clinical judgments. However, epidemiological analyses and mortality prediction models of cancer patients with invasive candidiasis remain limited. Method. A set of 40 potential risk factors was acquired in a sample of 258 patients with both invasive candidiasis and cancer. To begin, risk factors for Candida albicans vs. non-Candida albicans infections and persistent vs. nonpersistent Candida infections were analysed using classic statistical methods. Then, we applied three machine learning models (random forest, logistic regression, and support vector machine) to identify prognostic indicators related to mortality. Prediction performance of different models was assessed by precision, recall, F 1 score, accuracy, and AUC. Results. Of the 258 patients both with invasive candidiasis and cancer included in the analysis. The median age of patients was 62 years, and 95 (36.82%) patients were older than 65 years, of which 178 (66.28%) were male. And 186 (72.1%) patients underwent surgery 2 weeks before data collection, 100 (39.1%) patients stayed in ICU during hospitalisation, 99 (38.4%) patients had bacterial blood infection, 85 (32.9%) patients had persistent invasive candidiasis, and 41 (15.9%) patients died within 30 days. The usage of drainage catheter and prolonged length of hospitalisation are the dominant risk factors for non-Candida albicans infections and persistent Candida infections, respectively. Risk factors, such as septic shock, history of surgery within the past 2 weeks, usage of drainage tubes, length of stay in ICU, total parenteral nutrition, serum creatinine level, fungal antigen, stay in ICU during hospitalisation, and total bilirubin level, were significant predictors of death. The RF model outperformed the LR and SVM models. Precision, recall, F 1 score, accuracy, and AUC for RF were 64.29%, 75.63%, 69.23%, 89.61%, and 91.28%. Conclusions. In this study, the machine learning-based models accurately predicted the prognosis of cancer and invasive candidiasis patients. The algorithm could be used to help clinicians in high-risk patients’ early intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.