Transformation and evolution mechanisms of nitrogen during algae pyrolysis were investigated in depth with exploration of N-containing products under variant temperature. Results indicated nitrogen in algae is mainly in the form of protein-N (∼90%) with some inorganic-N. At 400-600 °C, protein-N in algae cracked first with algae pyrolysis and formed pyridinic-N, pyrrolic-N, and quaternary-N in char. The content of protein-N decreased significantly, while that of pyrrolic-N and quaternary-N increased gradually with temperature increasing. Pyridinic-N and pyrrolic-N formation was due to deamination or dehydrogenation of amino acids; subsequently, some pyridinic-N converted to quaternary-N. Increasing temperature decreased amides content greatly while increased that of nitriles and N-heterocyclic compounds (pyridines, pyrroles, and indoles) in bio-oil. Amides were formed through NH reacting with fatty acids, that underwent dehydration to form nitriles. Besides, NH and HCN yields increased gradually. NH resulted from ammonia-N, labile amino acids and amides decomposition, while HCN came from nitrile decomposition. At 700-800 °C, evolution trend of N-containing products was similar to that at 400-600 °C. While N-heterocyclic compounds in bio-oil mainly came from pyrifinic-N, pyrrolic-N, and quaternary-N decomposition. Moreover, cracking of pyridinic-N and pyrrolic-N produced HCN and NH. A mechanism of nitrogen transformation during algae pyrolysis is proposed based on amino acids decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.