As the research on artificial intelligence booms, there is broad interest in brain‐inspired computing using novel neuromorphic devices. The potential of various emerging materials and devices for neuromorphic computing has attracted extensive research efforts, leading to a large number of publications. Going forward, in order to better emulate the brain's functions, its relevant fundamentals, working mechanisms, and resultant behaviors need to be re‐visited, better understood, and connected to electronics. A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms. Recent progress in neuromorphic devices is reviewed and, more importantly, the existing challenges are highlighted to hopefully shed light on future research directions.
The intrinsic variability of switching behavior in memristors has been a major obstacle to their adoption as the next generation of universal memory. On the other hand, this natural stochasticity can be valuable for hardware security applications. Here we propose and demonstrate a novel true random number generator utilizing the stochastic delay time of threshold switching in a Ag:SiO2 diffusive memristor, which exhibits evident advantages in scalability, circuit complexity, and power consumption. The random bits generated by the diffusive memristor true random number generator pass all 15 NIST randomness tests without any post-processing, a first for memristive-switching true random number generators. Based on nanoparticle dynamic simulation and analytical estimates, we attribute the stochasticity in delay time to the probabilistic process by which Ag particles detach from a Ag reservoir. This work paves the way for memristors in hardware security applications for the era of the Internet of Things.
A novel Ag/oxide‐based threshold switching device with attractive features including ≈1010 nonlinearity is developed. High‐resolution transmission electron microscopic analysis of the nanoscale crosspoint device suggests that elongation of an Ag nanoparticle under voltage bias followed by spontaneous reformation of a more spherical shape after power off is responsible for the observed threshold switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.