Diagnostic testing for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remains a challenge around the world, especially in low-middle-income countries (LMICs) with poor socio-economic backgrounds. From the beginning of the pandemic in December 2019 to August 2021, a total of approximately 3.4 billion tests were performed globally. The majority of these tests were restricted to high income countries. Reagents for diagnostic testing became a premium, LMICs either cannot afford or find manufacturers unwilling to supply them with expensive analytical reagents and equipment. From March to December 2020 obtaining testing kits for SARS-CoV-2 testing was a challenge. As the number of SARS-CoV-2 infection cases increases globally, large-scale testing still remains a challenge in LMICs. The aim of this review paper is to compare the total number and frequencies of SARS-CoV-2 testing in LMICs and high-income countries (HICs) using publicly available data from Worldometer COVID-19, as well as discussing possible interventions and cost-effective measures to increase testing capability in LMICs. In summary, HICs conducted more SARS-CoV-2 testing (USA: 192%, Australia: 146%, Switzerland: 124% and Canada: 113%) compared to middle-income countries (MICs) (Vietnam: 43%, South Africa: 29%, Brazil: 27% and Venezuela: 12%) and low-income countries (LICs) (Bangladesh: 6%, Uganda: 4% and Nigeria: 1%). Some of the cost-effective solutions to counteract the aforementioned problems includes using saliva instead of oropharyngeal or nasopharyngeal swabs, sample pooling, and testing high-priority groups to increase the number of mass testing in LMICs.
Soil-transmitted helminths infect billions of people globally, particularly those residing in low- and middle-income regions with poor environmental sanitation and high levels of air and water pollution. Helminths display potent immunomodulatory activity by activating T helper type 2 (Th2) anti-inflammatory and Th3 regulatory immune responses. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes Coronavirus disease 2019 (COVID-19), can exacerbate Th1/Th17 pro-inflammatory cytokine production in humans, leading to a cytokine storm. Air pollutants (particulate matter, oxygen radicals, hydrocarbons and volatile organic compounds) and water pollutants (metals and organic chemicals) can also intensify Th1/Th17 immune response and could exacerbate SARS-CoV-2 related respiratory distress and failure. The present review focused on the epidemiology of SARS-CoV-2, helminths and fine particulate matter 2.5 microns or less in diameter (PM 2.5 ) air pollution exposure in helminth endemic regions, the possible immunomodulatory activity of helminths against SARS-CoV-2 hyper-inflammatory immune response, and whether air and water pollutants can further exacerbate SARS-CoV-2 related cytokine storm and in the process hinder helminths immunomodulatory functionality. Helminth Th2/Th3 immune response is associated with reductions in lung inflammation and damage, and decreased expression levels of angiotensin-converting enzyme 2 (ACE2) receptors (SARS-CoV-2 uses the ACE2 receptors to infect cells and associated with extensive lung damage). However, air pollutants are associated with overexpression of ACE2 receptors in the epithelial cell surface of the respiratory tract and exhaustion of Th2 immune response. Helminth-induced immunosuppression activity reduces vaccination efficacy, and diminishes vital Th1 cytokine production immune responses that are crucial for combating early stage infections. This could be reversed by continuous air pollution exposure which is known to intensify Th1 pro-inflammatory cytokine production to a point where the immunosuppressive activities of helminths could be hindered. Again, suppressed activities of helminths can also be disadvantageous against SARS-CoV-2 inflammatory response. This “yin and yang” approach seems complex and requires more understanding. Further studies are warranted in a cohort of SARS-CoV-2 infected individuals residing in helminths and air pollution endemic regions to offer more insights, and to impact mass periodic deworming programmes and environmental health policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.