Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.
One of the essential components of a phosphatase that specifically dephosphorylates the Saccharomyces cerevisiae RNA polymerase II (RPII) large subunit C-terminal domain (CTD) is a novel polypeptide encoded by an essential gene termed FCP1. The Fcp1 protein is localized to the nucleus, and it binds the largest subunit of the yeast general transcription factor IIF (Tfg1). In vitro, transcription factor IIF stimulates phosphatase activity in the presence of Fcp1 and a second complementing fraction. Two distinct regions of Fcp1 are capable of binding to Tfg1, but the C-terminal Tfg1 binding domain is dispensable for activity in vivo and in vitro. Sequence comparison reveals that residues 173-357 of Fcp1 correspond to an amino acid motif present in proteins of unknown function predicted in many organisms.Promoter-dependent transcription by RNA polymerase II (RPII) requires six general transcription factors (reviewed in ref.
TFIIF (RAP30/74) is a general initiation factor that also increases the rate of elongation by RNA polymerase II. A two-hybrid screen for RAP74-interacting proteins produced cDNAs encoding FCP1a, a novel, ubiquitously expressed human protein that interacts with the carboxyl-terminal evolutionarily conserved domain of RAP74. Related cDNAs encoding FCP1b lack a carboxylterminal RAP74-binding domain of FCP1a. FCP1 is an essential subunit of a RAP74-stimulated phosphatase that processively dephosphorylates the carboxyl-terminal domain of the largest RNA polymerase II subunit. FCP1 is also a stoichiometric component of a human RNA polymerase II holoenzyme complex. Initiation of transcription by RNA polymerase (RNAP)1 II involves the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (reviewed in Ref. 1). Beginning with TFIID, whose TATA box-binding protein subunit recognizes the TATA box present in many promoters, these factors can assemble in an ordered pathway in vitro onto a promoter (2, 3), resulting in the formation of a preinitiation complex containing more than 40 polypeptides. Subsequently, however, yeast and mammalian RNAP II holoenzymes that contain several or all of the general transcription factors and other polypeptides were discovered (4 -9). There is evidence that transcription by RNAP II in Saccharomyces cerevisiae generally depends on such a holoenzyme (10) and that recruitment of yeast holoenzyme to a promoter would lead to a high rate of transcription (11).During or shortly after initiation by RNAP II, the carboxylterminal domain (CTD) of its largest subunit becomes heavily phosphorylated and remains so during transcript elongation (12). The phosphorylated form of RNAP II is designated RNAP IIO, whereas the unphosphorylated form is designated RNAP IIA. One subunit of TFIIH is a protein kinase that can phosphorylate the CTD (13). Phosphorylation of the CTD by PTEFb, a different Drosophila CTD kinase, has been shown to enhance the processivity of chain elongation by RNAP II in vitro (14). Concomitant with or following the termination of transcription, the CTD must be dephosphorylated by a protein phosphatase, since RNAP IIO cannot assemble directly into a preinitiation complex on either the adenovirus-2 major late or murine dihydrofolate reductase promoter in vitro (15-17). Accordingly, CTD phosphatase may function as a global regulator of gene expression by controlling the pool of RNAP IIA available for initiation. A phosphatase whose activity is stimulated by RAP74 and dephosphorylates the CTD in a processive manner has been purified from HeLa cell extracts (18,19).Certain activator proteins increase the efficiency of RNA chain elongation downstream from the promoter. For example, RNAP II pauses with an unphosphorylated CTD about 25-40 nucleotides downstream from the initiation site of Drosophila hsp70 genes and is stimulated by heat shock and the heat shock factor to become phosphorylated and leave these pause sites (Ref. 20 and references therein). Increasing evidence suppo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.