High-resolution imaging of molecules intrinsically involved in malignancy and metastasis would be of great value for clinical detection and staging of tumors. We now report in vivo visualization of matrix metalloproteinase activities by MRI and fluorescence of dendrimeric nanoparticles coated with activatable cell penetrating peptides (ACPPs), labeled with Cy5, gadolinium, or both. Uptake of such nanoparticles in tumors is 4-to 15-fold higher than for unconjugated ACPPs. With fluorescent molecules, we are able to detect residual tumor and metastases as small as 200 μm, which can be resected under fluorescence guidance and analyzed histopathologically with fluorescence microscopy. We show that uptake via this mechanism is comparable to that of other near infrared protease sensors, with the added advantage that the approach is translatable to MRI. Once activated, the Gd-labeled nanoparticles deposit high levels (30-50 μM) of Gd in tumor parenchyma with even higher amounts deposited in regions of infiltrative tumor, resulting in useful T 1 contrast lasting several days after injection. These results should improve MRI-guided clinical staging, presurgical planning, and intraoperative fluorescence-guided surgery. The approach may be generalizable to deliver radiationsensitizing and chemotherapeutic agents.Molecular navigation | dendrimeric nanoparticles | molecular amplification | targeted imaging agent | transgenic tumor model C linical cancer staging currently depends mainly on anatomical imaging with x-ray computed tomography (CT) and MRI. Some tumors can be imaged by PET of glucose uptake, but modest spatial resolution, high cost, exposure to radiation, and imperfect correlation of glucose uptake with malignancy limit the usefulness of PET and its more recent combination with CT. MRI is a particularly attractive imaging modality due to its moderate cost, relatively widespread availability, high spatial resolution tomography, excellent anatomical detail, and lack of radioactivity. Most clinical MRI is either T 1 -or T 2 -weighted, for which the standard contrast agents are, respectively, gadolinium (Gd) chelates and superparamagnetic iron oxide particles. The difficulty in using MRI for molecular imaging of specific biomolecules rather than for anatomy is sensitivity, because the detection limit is on the order of 10 −5 M Gd chelate or Fe, respectively (1, 2). Therefore several orders of magnitude of molecular amplification are necessary to detect tumor markers at low nanomolar abundance. T 2 -weighted MRI has the additional disadvantages that contrast is usually negative and the iron oxide particles are largely confined to the intravascular and reticuloendothelial compartments. Recently, there has been interest in designing T 1 magnetic resonance (MR) contrast agents that give information beyond that of a standard blood pool agent and detect tumor neovascularization (3, 4), folate receptor (5), and various antigens (6-8). Recent attempts at in vivo MRI of matrix metalloproteinase (MMP) activity have been based on...
Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation.
Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with "upstream" propagation of vasodilation toward the cortical surface along the diving arterioles and "downstream" propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the "initial dip" was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.blood flow | cortical layer | hemodynamic | imaging | somatosensory N euroglial activation is accompanied by release of vasoactive mediators that dilate and constrict the surrounding arterioles (1, 2) and capillaries (3, 4). These changes in diameter in turn lead to changes in blood flow throughout the vascular matrix and can be detected on the macroscopic level as a positive blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal when blood flow response exceeds oxygen consumption (5-7). Under the assumption of local neurovascular coupling, the onset of the changes in diameter is determined by the following three factors, any of which may differ as a function of the cortical depth and branching order within the vascular tree: (i) the onset and peak time of the neuronal activity evoking the response; (ii) the time needed to release a vascular messenger [e.g., prostaglandin or NO (8)]; and (iii) the time needed for the target vessel to respond. However, in addition to local neurovascular coupling, vascular responses can propagate within the arteriolar/capillary networks (3, 9, 10). Indeed, propagation of dilation and constriction has been observed on the cortical surface (11-15), in excised cerebral vessels, and in noncerebral preparations (16,17).Previous studies with single-vessel resolution in vivo have been limited to the cortical surface, but recent improvements in twophoton microscopy technology allow direct imaging of singlevessel diameters and flow velocities within a 3D geometry of vascular trees (1,2,18,19). In the present study, we used this technology to examine microvascular responses to sensory stimulation down to 550 μm below the cortical surface in the rat primary somatosensory cortex (SI). We then compared the results with highresolution BOLD fMRI to investigate the extent to which laminar ...
Summary Chronic activation of mammalian target of rapamycin complex 1 (mTORC1) and p70 S6 kinase (S6K) in response to hypernutrition contributes to obesity-associated metabolic pathologies including hepatosteatosis and insulin resistance. Sestrins are stress-inducible proteins that activate AMP-activated protein kinase (AMPK) and suppress mTORC1-S6K activity, but their role in mammalian physiology and metabolism has not been investigated. We show that Sestrin2, encoded by the Sesn2 locus whose expression is induced upon hypernutrition, maintains metabolic homeostasis in liver of obese mice. Sesn2 ablation exacerbates obesity-induced mTORC1-S6K activation, glucose intolerance, insulin resistance and hepatosteatosis, all of which are reversed by AMPK activation. Furthermore, concomitant ablation of Sesn2 and Sesn3 provokes hepatic mTORC1-S6K activation and insulin resistance even in the absence of nutritional overload and obesity. These results demonstrate an important homeostatic function for the stress-inducible Sestrin protein family in the control of mammalian lipid and glucose metabolism.
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely due to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology 1 , 2 . The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumourigenesis and drug resistance 3 – 7 . Moreover, PSC activation occurs very early during PDAC tumourigenesis 8 – 10 , and activated PSCs comprise a significant fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an Achilles’ heel exploitable to develop effective strategies for PDAC therapy and diagnosis. Here, starting with systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion significantly slow tumour progression and augment chemotherapy efficacy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and EMT status. Moreover, we show that, consistently in both mouse models and human PDAC, aberrant production of LIF in the pancreas is unique to pathological conditions and correlates with PDAC pathogenesis, and circulating LIF level changes correlate well with tumour response to therapy. Collectively, these findings uncover a previously unappreciated function of LIF in PDAC tumourigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. These studies underscore how a better understanding of cell-cell communications within the tumour microenvironment promotes novel strategies for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.