The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps.
Aim
Population fragmentation represents a leitmotif of conservation biology, but the impact of population reconnection is less well studied. The recent recolonization of large carnivores in Europe is a good model for studying this phenomenon. We aim to show novel data regarding distribution and population genetic structure of the grey wolf in Central Europe, a region considered a frequent crossroad and contact zone of different phylogeographic lineages, in a biogeographic context.
Location
Western Carpathians, Central Europe.
Methods
In concordance with the presumption of a highly mobile mammal, individual‐based Bayesian clustering and a posteriori definition of populations were used. Integrating the frameworks of landscape genetics and biogeography enabled the identification of transitions in population architecture. These patterns could be ascribed to isolating factors based on historical knowledge about species demography.
Results
Genetic differentiation mirrors population isolation and recognized environmental clusters, suggesting ecotypic variation. The east–west split in the Western Carpathians likely represents the signature of range fragmentation during bottlenecks in the 20th century. Mitochondrial variability is more depleted than nuclear variability, indicating founder‐flush demography. Microsatellites show finer‐scale differentiation in the Carpathians compared to the European plain, corresponding to topographic heterogeneity. Long‐range dispersal of a Carpathian wolf (ca. 300 km), the establishment of enclaves originated from the lowland population and admixture with mountain wolves were ascertained, indicating a population fraction producing large‐scale gene flow.
Main conclusion
Carpathian wolves are characterized by periods of population and range decline due to eradication, facilitating refugial role of alpine habitats and peripatric effects, followed by expansions and fusions probably caused by forest transition, population adaptation and efforts in conservation management. New occurrence and hybridization events predict further contacts between formerly isolated populations, with potential opposing effects of heterosis and outbreeding depression. Population recovery might be hindered due to isolation by environment and anthropogenic impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.