We present new 1-1.25 µm (z and J band) Subaru/IRCS and 2 µm (K band) VLT/NaCo data for HR 8799 and a rereduction of the 3-5 µm MMT/Clio data first presented by Hinz et al. (2010). Our VLT/NaCo data yields a detection of a fourth planet at a projected separation of ∼ 15 AU -"HR 8799e". We also report new, albeit weak detections of HR 8799b at 1.03 µm and 3.3 µm. Empirical comparisons to field brown dwarfs show that at least HR 8799b and HR8799c, and possibly HR 8799d, have near-to-mid IR colors/magnitudes significantly discrepant from the L/T dwarf sequence. Standard cloud deck atmosphere models appropriate for brown dwarfs provide only (marginally) statistically meaningful fits to HR 8799b and c for unphysically small radii. Models with thicker cloud layers not present in brown dwarfs reproduce the planets' SEDs far more accurately and without the need for rescaling the planets' radii. Our preliminary modeling suggests that HR 8799b has log(g) = 4-4.5, T ef f = 900K, while HR 8799c, d, and (by inference) e have log(g) = 4-4.5, T ef f = 1000-1200K. Combining results from planet evolution models and new dynamical stability limits implies that the masses of HR 8799b, c, d, and e are 6-7 M J , 7-10 M J , 7-10 M J and 7-10 M J . "Patchy" cloud prescriptions may provide even better fits to the data and may lower the estimated surface gravities and masses. Finally, contrary to some recent claims, forming the HR 8799 planets by core accretion is still plausible, although such systems are likely rare.
We present a new method to constrain the grain size in protoplanetary disks with polarization observations at millimeter wavelengths. If dust grains are grown to the size comparable to the wavelengths, the dust grains are expected to have a large scattering opacity and thus the continuum emission is expected to be polarized due to self-scattering. We perform 3D radiative transfer calculations to estimate the polarization degree for the protoplanetary disks having radial Gaussian-like dust surface density distributions, which have been recently discovered. The maximum grain size is set to be 100 µm and the observing wavelength to be 870 µm. We find that the polarization degree is as high as 2.5% with a subarcsec spatial resolution, which is likely to be detected with near-future ALMA observations. The emission is polarized due to scattering of anisotropic continuum emission. The map of the polarization degree shows a double peaked distribution and the polarization vectors are in the radial direction in the inner ring and in the azimuthal direction in the outer ring. We also find the wavelength dependence of the polarization degree: the polarization degree is the highest if dust grains have a maximum size of a max ∼ λ/2π, where λ is the observing wavelength. Hence, multi-wave and spatially resolved polarization observations toward protoplanetary disks enable us to put a constraint on the grain size. The constraint on the grain size from polarization observations is independent of or may be even stronger than that from the opacity index.
We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in 7 mid-and far-infrared bands with the Spitzer Space Telescope. There are 215 previously-identified members of the Taurus star-forming region in our ∼44 square degree map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bonafide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided -2by extensive optical, X-ray, and ultraviolet imaging, and found 148 candidate new members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, 3 probable new members, and 10 possible new members, an increase of 15-20% in Taurus members. Of the objects for which we have spectroscopy, 7 are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously-identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and AGN.Subject headings: stars: formation -stars: circumstellar matter -stars: pre-main sequenceinfrared: starswhere m is the reported magnitude (and F ν the flux density) for a given object, Z = 18.259, 17.204, and 14.837, and f = 1.94×10 −16 , 4.76×10 −16 , and 5.71×10 −15 ergs cm −2 s −1Å−1 counts −1 sec for U , UVW1, and UVW2 (respectively). In the equation, λ is in units ofÅ, and c is 3×10 18Å s −1 The effective wavelengths are 0.344, 0.291, and 0.212 µm for U , UVW1, and UVW2. There are ∼1600 objects with XMM-Newton OM flux densities in our catalog (0.2% of the entire catalog).We note that many of the X-ray detected XEST sources are likely background galaxies (see Güdel et al. 2007) and that XEST included regions not covered by our map, such as L1551.The XEST team assembled a catalog of supporting data from the literature, such as optical photometric measurements, for all of the previously-identified Taurus members (see §3.1.1 below); we have included these photometric points in our database, converting Johnson magnitudes to flux densities using zero-points available in the literature (e.g., Cox 2001 and references therein).The SEDs presented in this paper use all of these supporting data where available (except for the X-ray fluxes), and are presented as λF λ in cgs units (erg s −1 cm −2 ), against λ in microns.2 In SDSS, a "maggy" is the ratio of the flux density of the object to a standard flux density. The Sloan magnitudes are AB magnitudes, as opposed to Vega magnitudes. In the AB system, a flat spectrum object with 3631 Jy at each band should have every magnitude equal to zero, and all maggies equal to one. Flux densities returned by th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.