The findings discussed support growth at the secondary site as a clinical target for metastasis treatment and prevention. Metastasis suppressor genes may offer valuable mechanistic insight for guiding specific therapeutic strategies, which may include drug induced reactivation of metastasis suppressor genes and their signaling pathways. Clinical assessment of metastasis suppressor gene product status in disseminated cancer cells may improve the accuracy of predicting the prognosis in patients with clinically localized disease.
Compelling pre-clinical and pilot clinical data support the role of green tea polyphenols in prostate cancer prevention. We conducted a randomized, double-blind, placebo controlled trial of Polyphenon E (enriched green tea polyphenol extract) in men with prostate cancer scheduled to undergo radical prostatectomy. The study aimed to determine the bioavailability of green tea polyphenols in prostate tissue and to measure its effects on systemic and tissue biomarkers of prostate cancer carcinogenesis. Participants received either Polyphenon E (containing 800 mg epigallocatechin gallate) or placebo daily for 3–6 weeks before surgery. Following the intervention, green tea polyphenol levels in the prostatectomy tissue were low to undetectable. Polyphenon E intervention resulted in favorable but not statistically significant changes in serum prostate specific antigen, serum insulin-like growth factor axis, and oxidative DNA damage in blood leukocytes. Tissue biomarkers of cell proliferation, apoptosis, and angiogenesis in the prostatectomy tissue did not differ between the treatment arms. The proportion of subjects who had a decrease in Gleason score between biopsy and surgical specimens was greater in those on Polyphenon E but was not statistically significant. The study's findings of low bioavailability and/or bioaccumulation of green tea polyphenols in prostate tissue and statistically insignificant changes in systemic and tissue biomarkers from 3–6 weeks of administration suggests that prostate cancer preventive activity of green tea polyphenols, if occurring, may be through indirect means and/or that the activity may need to be evaluated with longer intervention durations, repeated dosing, or in patients at earlier stages of the disease.
BACKGROUNDRenal medullary carcinoma is a rare kidney tumor with highly aggressive behavior. This tumor occurs exclusively in young patients with sickle cell trait or disease. To the authors' knowledge, very little is known to date regarding the underlying molecular genetics of this tumor, and no effective therapy has been established.METHODSThe authors analyzed the gene expression profiles of 2 renal medullary carcinomas from patients with sickle cell trait using microarrays containing 21,632 cyclic DNA (cDNA) clones and compared them with the gene expression profiles of 64 renal tumors.RESULTSBased on global gene clustering with 3583 selected cDNAs, the authors found a distinct molecular signature of renal medullary carcinoma, which clustered closely with urothelial (transitional cell) carcinoma of the renal pelvis, rather than renal cell carcinoma (RCC). This finding of a significant difference in the gene expression patterns of renal medullary carcinoma compared with RCC suggests that this tumor should not be treated as a conventional RCC but, rather, as a special malignancy. This study also identified genes/proteins that may serve as biomarkers for renal medullary carcinoma or as potential targets of novel therapies. In addition, comparative genomic microarray analysis allowed the authors to predict the lack of chromosomal imbalances in this tumor.CONCLUSIONSTo the authors' knowledge, the current study is the first molecular profiling of renal medullary carcinoma, a rare but highly aggressive kidney carcinoma. The genes that are expressed specifically in this tumor may lead to not only a better understanding of its molecular pathways and discoveries of novel diagnostic markers but also, more important, to effective therapeutic interventions. Cancer 2004;100:976–85. © 2004 American Cancer Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.