Adropin, a peptide hormone expressed in liver and brain, is known to improve insulin resistance and endothelial dysfunction. Serum levels of adropin are negatively associated with the severity of coronary artery disease. However, it remains unknown whether adropin could modulate atherogenesis. We assessed the effects of adropin on inflammatory molecule expression and human THP1 monocyte adhesion in human umbilical vein endothelial cells (HUVECs), foam cell formation in THP1 monocyte-derived macrophages, and the migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro and atherogenesis in Apoe−/− mice in vivo. Adropin was expressed in THP1 monocytes, their derived macrophages, HASMCs, and HUVECs. Adropin suppressed tumor necrosis factor α-induced THP1 monocyte adhesion to HUVECs, which was associated with vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 downregulation in HUVECs. Adropin shifted the phenotype to anti-inflammatory M2 rather than pro-inflammatory M1 via peroxisome proliferator-activated receptor γ upregulation during monocyte differentiation into macrophages. Adropin had no significant effects on oxidized low-density lipoprotein-induced foam cell formation in macrophages. In HASMCs, adropin suppressed the migration and proliferation without inducing apoptosis via ERK1/2 and Bax downregulation and phosphoinositide 3-kinase/Akt/Bcl2 upregulation. Chronic administration of adropin to Apoe−/− mice attenuated the development of atherosclerotic lesions in the aorta, with reduced the intra-plaque monocyte/macrophage infiltration and smooth muscle cell content. Thus, adropin could serve as a novel therapeutic target in atherosclerosis and related diseases.
BackgroundNeopterin, a metabolite of GTP, is produced by activated macrophages and is abundantly expressed within atherosclerotic lesions in human aorta and carotid and coronary arteries. We aimed to clarify the influence of neopterin on both vascular inflammation and atherosclerosis, as neither effect had been fully assessed.Methods and ResultsWe investigated neopterin expression in coronary artery lesions and plasma from patients with coronary artery disease. We assessed the atheroprotective effects of neopterin in vitro using human aortic endothelial cells, human monocyte‐derived macrophages, and human aortic smooth muscle cells. In vivo experiments included a study of aortic lesions in apolipoprotein E–deficient mice. Neopterin expression in coronary artery lesions and plasma was markedly increased in patients with versus without coronary artery disease. In human aortic endothelial cells, neopterin reduced proliferation and TNF‐α (tumor necrosis factor α)–induced upregulation of MCP‐1 (monocyte chemotactic protein 1), ICAM‐1 (intercellular adhesion molecule 1), and VCAM‐1 (vascular cell adhesion molecule 1). Neopterin attenuated TNF‐α–induced monocyte adhesion to human aortic endothelial cells and the inflammatory macrophage phenotype via NF‐κB (nuclear factor‐κB) downregulation. Neopterin suppressed oxidized low‐density lipoprotein–induced foam cell formation associated with CD36 downregulation and upregulation of ATP‐binding cassette transporters A1 and G1 in human monocyte‐derived macrophages. In human aortic smooth muscle cells, neopterin suppressed angiotensin II–induced migration and proliferation via c‐Src/Raf‐1/ERK1/2 downregulation without inducing apoptosis. Exogenous neopterin administration and endogenous neopterin attenuation with its neutralizing antibody for 4 weeks retarded and promoted, respectively, the development of aortic atherosclerotic lesions in apolipoprotein E–deficient mice.ConclusionsOur results indicate that neopterin prevents both vascular inflammation and atherosclerosis and may be induced to counteract the progression of atherosclerotic lesions. Consequently, neopterin could be of use as a novel therapeutic target for atherosclerotic cardiovascular diseases.
Boron nitride nanotube (BNNT)@mesoporous silica hybrids with controllable surface zeta potential were fabricated for intracellular delivery of doxorubicin. The materials showed higher suspension ability, doxorubicin intracellular endocytosis efficiency, and LNcap prostate cancer cell killing ability compared with naked BNNTs.
Our data demonstrate no toxic effects up to concentrations of 20 µg/ml, once more confirming biosafety of BNNTs, and again highlighting that nanoparticle aspect ratio plays a key role in the biocompatibility evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.