The status of IPF in the Japanese population was clarified for the first time through our study. Our results showed that in men, the incidence of death caused by acute exacerbation was higher and that caused by cardiovascular disease was lower in Japan than in Western countries. These results may suggest ethnic differences in IPF.
Shift workers have been reported to have an increased risk of some cancers. However, the risk of prostate cancer in shift workers is not known to have been examined previously. This study prospectively examined the association between shift work and risk of prostate cancer incidence among 14,052 working men in Japan enrolled in a large-scale prospective cohort. A baseline survey was conducted between 1988 and 1990. Subjects were asked to indicate the most regular work schedule they had undertaken previously: day work, rotating-shift work, or fixed-night work. During 111,974 person-years, 31 cases of prostate cancer were recorded. The Cox proportional hazards model was used to estimate the risk, with adjustments for age, family history of prostate cancer, study area surveyed, body mass index, smoking, alcohol drinking, job type, physical activity at work, workplace, perceived stress, educational level, and marriage status. Compared with day workers, rotating-shift workers were significantly at risk for prostate cancer (relative risk = 3.0, 95% confidence interval: 1.2, 7.7), whereas fixed-night work was associated with a small and nonsignificant increase in risk. This report is the first known to reveal a significant relation between rotating-shift work and prostate cancer.
Activation of Wnt signaling has been implicated in gastric tumorigenesis, although mutations in APC (adenomatous polyposis coli), CTNNB1 (b-catenin) and AXIN are seen much less frequently in gastric cancer (GC) than in colorectal cancer. In the present study, we investigated the relationship between activation of Wnt signaling and changes in the expression of secreted frizzled-related protein (SFRP) family genes in GC. We frequently observed nuclear b-catenin accumulation (13/15; 87%) and detected the active form of b-catenin in most (12/16; 75%) GC cell lines. CpG methylation-dependent silencing of SFRP1, SFRP2 and SFRP5 was frequently seen among GC cell lines (SFRP1, 16/16, 100%; SFRP2, 16/ 16, 100%; SFRP5, 13/16, 81%) and primary GC specimens (SFRP1, 42/46, 91%; SFRP2, 44/46, 96%; SFRP5, 30/46, 65%), and treatment with the DNA methyltransferase inhibitor 5-aza-2 0 -deoxycytidine rapidly restored SFRP expression. Ectopic expression of SFRPs downregulated T-cell factor/lymphocyte enhancer factor transcriptional activity, suppressed cell growth and induced apoptosis in GC cells. Analysis of global expression revealed that overexpression of SFRP2 repressed Wnt target genes and induced changes in the expression of numerous genes related to proliferation, growth and apoptosis in GC cells. It thus appears that aberrant SFRP methylation is one of the major mechanisms by which Wnt signaling is activated in GC.
Although mutation of APC or CTNNB1 (b-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a b-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. British Journal of Cancer (2008) Wnt ligands are secreted proteins that bind to transmembrane receptors in the Frizzled (Fz) family. During normal developmental processes, the resultant Wnt signalling plays essential roles in the regulation of cell proliferation, patterning and fate determination (Cadigan and Nusse, 1997). The binding of Wnt to Fz leads to dephosphorylation and stabilisation of b-catenin, enabling it to be translocated into the nucleus, where it interacts with members of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family of transcription factors to stimulate the expression of target genes. This signalling pathway is strongly implicated in tumorigenesis; indeed, the first mammalian Wnt isoform was identified based on its ability to promote mouse mammary tumorigenesis (Polakis, 2000). In addition, aberrant nuclear and cytoplasmic localisation of b-catenin is frequently observed in human breast cancer (Lin et al, 2000;Ryo et al, 2001;Chung et al, 2004). In contrast to colorectal cancer (CRC), however, mutation of APC, AXIN or CTNNB1 (b-catenin) is rare in breast cancer, indicating that other mechanisms are responsible for the activation of b-catenin. These mechanisms could include increased expression of Wnt ligand (Huguet et al, 1994;Dale et al, 1996;Bui et al, 1997) and/or the loss of Wnt antagonists.Several classes of secreted Wnt antagonists are known, including the Cerberus, Wnt inhibitory factor 1, secreted frizzled-related protein (SFRP) and the Dickkopf (DKK) families (Kawano and Kypta, 2003). The SFRP family is comprised of five secreted glycopr...
Activation of Wnt signaling has been implicated in tumorigenesis, and epigenetic silencing of Wnt antagonist genes has been detected in various cancers. In the present study, we examined the expression and methylation of DICKKOPF (DKK) family genes in gastrointestinal cancer cell lines. We found that all known DKK genes were frequently silenced in colorectal cancer (CRC) cells (DKK1, 3/9, 33%; DKK2, 8/9, 89%; DKK3, 5/9, 56% and DKK4, 5/9, 56%), but not in normal colon mucosa. DKK1, -2 and -3 have 5' CpG islands, and show an inverse relation between expression and methylation. DKK methylation also was frequently observed in gastric cancer (GC) cell lines (DKK1, 6/16, 38%; DKK2, 15/16, 94% and DKK3, 10/16, 63%), but was seen less frequently in hepatocellular carcinoma and pancreatic cancer cell lines. DKKs also were frequently methylated in primary CRCs (DKK1, 7/58, 12%; DKK2, 45/58, 78% and DKK3, 12/58, 21%) and GCs (DKK1, 15/31, 48%; DKK2, 26/31, 84% and DKK3, 12/31, 39%). Against a background of CTNNB1 or APC mutations, Dickkopfs (Dkks) were less effective inhibitors of Wnt signaling than secreted frizzled-related proteins, though over-expression of Dkks suppressed colony formation of CRC cells with such mutations. Our results demonstrate that DKKs are frequent targets of epigenetic silencing in gastrointestinal tumors, and that loss of DKKs may facilitate tumorigenesis through beta-catenin/T-cell factor-independent mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.