A Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) plays an essential role in bone accrual and eye development. Here, we show that LRP5 is also required for normal cholesterol and glucose metabolism. The production of mice lacking LRP5 revealed that LRP5 deficiency led to increased plasma cholesterol levels in mice fed a high-fat diet, because of the decreased hepatic clearance of chylomicron remnants. In addition, when fed a normal diet, LRP5-deficient mice showed a markedly impaired glucose tolerance. The LRP5-deficient islets had a marked reduction in the levels of intracellular ATP and Ca 2؉ in response to glucose, and thereby glucoseinduced insulin secretion was decreased. The intracellular inositol 1,4,5-trisphosphate (IP3) production in response to glucose was also reduced in LRP5؊͞؊ islets. Real-time PCR analysis revealed a marked reduction of various transcripts for genes involved in glucose sensing in LRP5؊͞؊ islets. Furthermore, exposure of LRP5؉͞؉ islets to Wnt-3a and Wnt-5a stimulates glucose-induced insulin secretion and this stimulation was blocked by the addition of a soluble form of Wnt receptor, secreted Frizzled-related protein-1. In contrast, LRP5-deficient islets lacked the Wnt-3a-stimulated insulin secretion. These data suggest that Wnt͞LRP5 signaling contributes to the glucose-induced insulin secretion in the islets.and LRP6 are coreceptors involved in the Wnt signaling pathway (1-6). The Wnt signaling pathway plays a pivotal role in embryonic development (7,8) and oncogenesis (9) through various signaling molecules including Frizzled receptors (10), recently characterized LRP5 and LRP6 (1-6), and Dickkopf proteins (4, 6). In addition, the Wnt signaling is also involved in adipogenesis by negatively regulating adipogenic transcription factors (Tcfs) (11). Although Wnt signaling has been characterized in both developmental and oncogenic processes, little is known about its function in the normal adult.Recent studies have revealed that loss of function mutations in the LRP5 gene cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (12). LRP5 is expressed in osteoblasts and transduces Wnt signaling via the canonical pathway, thereby modulating bone accrual development (12, 13). A point mutation in a ''propeller'' motif in LRP5 causes a dominant-positive high bone density by impairing the action of a normal antagonist of the Wnt pathway, Dickkopf, thereby increasing Wnt signaling (14,15). In addition, the human LRP5 gene is mapped within the region (IDDM4) linked to type 1 diabetes on chromosome 11q13 (16).In previous studies, we and others showed that LRP5 is highly expressed in many tissues, including hepatocytes and pancreatic beta cells (17,18). We also showed that LRP5 can bind apolipoprotein E (apoE) (18). This finding raises the possibility that LRP5 plays a role in the hepatic clearance of apoE-containing chylomicron remnants, a major plasma lipoprotein carrying diet-derived cholesterol.To evaluate the in vivo roles of LRP5, we generated LRP...
Objectives-A low level of high-density lipoprotein (HDL) in plasma has been recognized as an aspect of metabolic syndrome and as a crucial risk factor of cardiovascular events. However, the physiological regulation of plasma HDL levels has not been completely defined. Current studies aim to reveal the contribution of angiopoietin-like protein3 (angptl3), previously known as a plasma suppressor of lipoprotein lipase, to HDL metabolism. Methods and Results-Angptl3-deficient mice showed low plasma HDL cholesterol and HDL phospholipid (PL), and which were increased by ANGPTL3 supplementation via adenovirus. In vitro, ANGPTL3 inhibited the phospholipase activity of endothelial lipase (EL), which hydrolyzes HDL-PL and hence decreases plasma HDL levels, through a putative heparin-binding site in the N-terminal domain of ANGPTL3. Post-heparin plasma in Angptl3-knockout mice had higher phospholipase activity than did that in wild-type mice, suggesting that the activity of endogenous EL is elevated in Angptl3-deficient mice. Furthermore, we established an ELISA system for human ANGPTL3 and found that plasma ANGPTL3 levels significantly correlated with plasma HDL cholesterol and HDL-PL levels in human subjects. Key Words: angptl3 Ⅲ high density lipoprotein Ⅲ endothelial lipase Ⅲ phospholipase Ⅲ triglyceride P lasma concentrations of high-density lipoprotein (HDL) cholesterol are inversely correlated with the risk of atherosclerotic cardiovascular disease. 1 HDL cholesterol levels are low in patients with metabolic disorders, such as obesity, insulin resistance, and diabetes. 2,3 However, the genetic and metabolic factors that regulate HDL metabolism remain to be elucidated. Recently, endothelial lipase (EL) has been recognized as one factor that influences HDL metabolism. EL was originally discovered as a member of the family of triglyceride (TG)-lipases together with lipoprotein lipase (LPL) and hepatic lipase (HL). In contrast to LPL or HL, however, EL has relatively lower triglyceride lipase activity and substantially higher phospholipid lipase activity and can hydrolyze HDL phospholipids (PL). 4 Overexpression of EL in mice resulted in reduced plasma HDL levels and EL knockout mice showed significant increase in HDL levels, [5][6][7] indicating that EL regulates HDL metabolism. Conclusions-Angptl3In the colony of KK mice, characterized by obesity, diabetes mellitus, and hypertriglyceridemia, we recently identified a mutant subgroup of KK/Snk mice with low plasma TG levels despite maintaining the phenotype of obesity and diabetes. Genetic mapping and positional cloning identified the gene of angiopoietin-like protein 3 (Angptl3), which was mutated in the KK/Snk mice. The Angptl3 gene in KK/Snk mice contained a 4-bp nucleotide insertion in exon 6, which caused a premature stop codon attributable to a frameshift, leading to a lack of production of the protein. 8 Angptl3 mRNA is expressed exclusively in the livers of humans and mice. ANGPTL3 protein contains a signal sequence of 18 amino acids at the N terminus, followed b...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.