Background/PurposeSarcopenia is a prognostic factor in patients with head and neck cancer (HNC). Sarcopenia can be determined using the skeletal muscle index (SMI) calculated from cervical neck skeletal muscle (SM) segmentations. However, SM segmentation requires manual input, which is time-consuming and variable. Therefore, we developed a fully-automated approach to segment cervical vertebra SM.Materials/Methods390 HNC patients with contrast-enhanced CT scans were utilized (300-training, 90-testing). Ground-truth single-slice SM segmentations at the C3 vertebra were manually generated. A multi-stage deep learning pipeline was developed, where a 3D ResUNet auto-segmented the C3 section (33 mm window), the middle slice of the section was auto-selected, and a 2D ResUNet auto-segmented the auto-selected slice. Both the 3D and 2D approaches trained five sub-models (5-fold cross-validation) and combined sub-model predictions on the test set using majority vote ensembling. Model performance was primarily determined using the Dice similarity coefficient (DSC). Predicted SMI was calculated using the auto-segmented SM cross-sectional area. Finally, using established SMI cutoffs, we performed a Kaplan-Meier analysis to determine associations with overall survival.ResultsMean test set DSC of the 3D and 2D models were 0.96 and 0.95, respectively. Predicted SMI had high correlation to the ground-truth SMI in males and females (r>0.96). Predicted SMI stratified patients for overall survival in males (log-rank p = 0.01) but not females (log-rank p = 0.07), consistent with ground-truth SMI.ConclusionWe developed a high-performance, multi-stage, fully-automated approach to segment cervical vertebra SM. Our study is an essential step towards fully-automated sarcopenia-related decision-making in patients with HNC.
Determining progression-free survival (PFS) for head and neck squamous cell carcinoma (HNSCC) patients is a challenging but pertinent task that could help stratify patients for improved overall outcomes. PET/CT images provide a rich source of anatomical and metabolic data for potential clinical biomarkers that would inform treatment decisions and could help improve PFS. In this study, we participate in the 2021 HECKTOR Challenge to predict PFS in a large dataset of HNSCC PET/CT images using deep learning approaches. We develop a series of deep learning models based on the DenseNet architecture using a negative log-likelihood loss function that utilizes PET/CT images and clinical data as separate input channels to predict PFS in days. Internal model validation based on 10-fold cross-validation using the training data (N=224) yielded C-index values up to 0.622 (without) and 0.842 (with) censoring status considered in C-index computation, respectively. We then implemented model ensembling approaches based on the training data cross-validation folds to predict the PFS of the test set patients (N=101). External validation on the test set for the best ensembling method yielded a C-index value of 0.694. Our results are a promising example of how deep learning approaches can effectively utilize imaging and clinical data for medical outcome prediction in HNSCC, but further work in optimizing these processes is needed.
PET/CT images provide a rich data source for clinical prediction models in head and neck squamous cell carcinoma (HNSCC). Deep learning models often use images in an end-to-end fashion with clinical data or no additional input for predictions. However, in the context of HNSCC, the tumor region of interest may be an informative prior in the generation of improved prediction performance. In this study, we utilize a deep learning framework based on a DenseNet architecture to combine PET images, CT images, primary tumor segmentation masks, and clinical data as separate channels to predict progression-free survival (PFS) in days for HNSCC patients. Through internal validation (10-fold cross-validation) based on a large set of training data provided by the 2021 HECKTOR Challenge, we achieve a mean C-index of 0.855 +- 0.060 and 0.650 +- 0.074 when observed events are and are not included in the C-index calculation, respectively. Ensemble approaches applied to cross-validation folds yield C-index values up to 0.698 in the independent test set (external validation). Importantly, the value of the added segmentation mask is underscored in both internal and external validation by an improvement of the C-index when compared to models that do not utilize the segmentation mask. These promising results highlight the utility of including segmentation masks as additional input channels in deep learning pipelines for clinical outcome prediction in HNSCC.
The accurate determination of sarcopenia is critical for disease management in patients with head and neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-generated segmentations of skeletal muscle derived from computed tomography (CT) cross-sectional imaging. This has prompted the increasing utilization of machine learning models for automated sarcopenia determination. However, extant datasets currently do not provide the necessary manually-generated skeletal muscle segmentations at the C3 vertebral level needed for building these models. In this data descriptor, a set of 394 HNC patients were selected from The Cancer Imaging Archive, and their skeletal muscle and adipose tissue was manually segmented at the C3 vertebral level using sliceOmatic. Subsequently, using publicly disseminated Python scripts, we generated corresponding segmentations files in Neuroimaging Informatics Technology Initiative format. In addition to segmentation data, additional clinical demographic data germane to body composition analysis have been retrospectively collected for these patients. These data are a valuable resource for studying sarcopenia and body composition analysis in patients with HNC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.