In this paper, a new application of Equilibrium Optimizer (EO) is proposed for design hybrid microgrid to feed the electricity to Dakhla, Morocco, as an isolated area. EO is selected to design the microgrid system due to its high effectiveness in determining the optimal solution in very short time. EO is presented for selecting the optimal system design which can minimize the cost, improve the system stability, and cover the load at different climate conditions. Microgrid system consists of photovoltaic (PV), wind turbine (WT), battery, and diesel generator. The objective function treated in this paper is to minimize the net present cost (NPC), respecting several constraints such as the reliability, availability, and renewable fraction. The sensitivity analysis is conducted in two stages: Firstly, the impact of wind speed, solar radiation, interest rate, and diesel fuel on the NPC, and levelized cost of energy (LCOE) is analyzed. Secondly, the influence of size variation on loss of power supply probability (LPSP) is investigated. The results obtained by EO are compared with those obtained by recent metaheuristics optimization algorithms, namely, Harris Hawks Optimizer (HHO), Artificial Electric Field Algorithm (AEFA), Grey Wolf Optimizer (GWO), and Sooty Tern Optimization Algorithm (STOA). The results show that the optimal system design is achieved by the proposed EO, where renewable energy sources (PV and WT) represent 97% of the annual contribution and fast convergence characteristics are obtained by EO.
Recently, fast uptake of renewable energy sources (RES) in the world has introduced new difficulties and challenges; one of the most important challenges is providing economic energy with high efficiency and good quality. To reach this goal, many traditional and smart algorithms have been proposed and demonstrated their feasibility in obtaining the optimal solution. Therefore, this paper introduces an improved version of Bonobo Optimizer (BO) based on a quasi-oppositional method to solve the problem of designing a hybrid microgrid system including RES (photovoltaic (PV) panels, wind turbines (WT), and batteries) with diesel generators. A comparison between traditional BO, the Quasi-Oppositional BO (QOBO), and other optimization techniques called Harris Hawks Optimization (HHO), Artificial Electric Field Algorithm (AEFA) and Invasive Weed Optimization (IWO) is carried out to check the efficiency of the proposed QOBO. The QOBO is applied to a stand-alone hybrid microgrid system located in Aswan, Egypt. The results show the effectiveness of the QOBO algorithm to solve the optimal economic design problem for hybrid microgrid power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.