The overarching objective of this study was to provide the descriptive epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Qatar by addressing specific research questions through a series of national epidemiologic studies. Sources of data were the centralized and standardized national databases for SARS-CoV-2 infection. By July 10, 2020, 397,577 individuals had been tested for SARS-CoV-2 using polymerase-chain-reaction (PCR), of whom 110,986 were positive, a positivity cumulative rate of 27.9% (95% CI 27.8–28.1%). As of July 5, case severity rate, based on World Health Organization (WHO) severity classification, was 3.4% and case fatality rate was 1.4 per 1,000 persons. Age was by far the strongest predictor of severe, critical, or fatal infection. PCR positivity of nasopharyngeal/oropharyngeal swabs in a national community survey (May 6–7) including 1,307 participants was 14.9% (95% CI 11.5–19.0%); 58.5% of those testing positive were asymptomatic. Across 448 ad-hoc testing campaigns in workplaces and residential areas including 26,715 individuals, pooled mean PCR positivity was 15.6% (95% CI 13.7–17.7%). SARS-CoV-2 antibody prevalence was 24.0% (95% CI 23.3–24.6%) in 32,970 residual clinical blood specimens. Antibody prevalence was only 47.3% (95% CI 46.2–48.5%) in those who had at least one PCR positive result, but 91.3% (95% CI 89.5–92.9%) among those who were PCR positive > 3 weeks before serology testing. Qatar has experienced a large SARS-CoV-2 epidemic that is rapidly declining, apparently due to growing immunity levels in the population.
Background
Mathematical modeling constitutes an important tool for planning robust responses to epidemics. This study was conducted to guide the Qatari national response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. The study investigated the epidemic’s time-course, forecasted health care needs, predicted the impact of social and physical distancing restrictions, and rationalized and justified easing of restrictions.
Methods
An age-structured deterministic model was constructed to describe SARS-CoV-2 transmission dynamics and disease progression throughout the population.
Results
The enforced social and physical distancing interventions flattened the epidemic curve, reducing the peaks for incidence, prevalence, acute-care hospitalization, and intensive care unit (ICU) hospitalizations by 87%, 86%, 76%, and 78%, respectively. The daily number of new infections was predicted to peak at 12 750 on May 23, and active-infection prevalence was predicted to peak at 3.2% on May 25. Daily acute-care and ICU-care hospital admissions and occupancy were forecast accurately and precisely. By October 15, 2020, the basic reproduction number
R
0
had varied between 1.07-2.78, and 50.8% of the population were estimated to have been infected (1.43 million infections). The proportion of actual infections diagnosed was estimated at 11.6%. Applying the concept of
R
t
tuning, gradual easing of restrictions was rationalized and justified to start on June 15, 2020, when
R
t
declined to 0.7, to buffer the increased interpersonal contact with easing of restrictions and to minimize the risk of a second wave. No second wave has materialized as of October 15, 2020, five months after the epidemic peak.
Conclusions
Use of modeling and forecasting to guide the national response proved to be a successful strategy, reducing the toll of the epidemic to a manageable level for the health care system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.