The domestication of livestock represented a crucial step in human history. By using endogenous retroviruses as genetic markers, we found that sheep differentiated on the basis of their “retrotype” and morphological traits, dispersed across Eurasia and Africa via separate migratory episodes. Relicts of the first migrations include the Mouflon, as well as breeds previously recognized as “primitive” on the basis of their morphology, such as the Orkney, Soay and the Nordic short-tailed sheep now confined to the periphery of NW Europe. A later migratory episode, involving sheep with improved production traits, shaped the vast majority of present-day breeds. The ability to differentiate genetically primitive sheep from more modern breeds provides valuable insights into the history of sheep domestication.
Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.anthropogenic admixture | Camelus dromedarius | demographic history | paleogenetics | wild dromedary T he dromedary (Camelus dromedarius) is one of the largest domestic ungulates and one of the most recent additions to livestock. Known as the "ship of the desert" (1), it enabled the transportation of people and valuable goods (e.g., salt, incense, spices) over long distances connecting Arabia, the Near East, and North Africa. This multipurpose animal has outperformed all other domestic mammals, including the donkey, in arid environments and continues to provide basic commodities to millions of people inhabiting marginal agro-ecological zones. In the current context of advancing desertification and global climate change, there is renewed interest in the biology and production traits of the species (2), with the first annotated genome drafts having been recently released (3, 4). SignificanceThe dromedary is one of the largest domesticates, sustainably used in arid and hostile environments. It provides food and transport to millions of people in marginal agricultural areas. We show how important long-distance and back-and-forth movements in ancient caravan routes shaped the species' genetic diversity. Using a global sample set and ancient mitochondrial DNA analyses, we describe the population structure in modern dromedaries and their wild extinct ancestors. Phylogenetic analyses of ancient and modern dro...
Dromedaries have been essential for the prosperity of civilizations in arid environments and the dispersal of humans, goods and cultures along ancient, cross-continental trading routes. With increasing desertification their importance as livestock species is rising rapidly, but little is known about their genome-wide diversity and demographic history. As previous studies using few nuclear markers found weak phylogeographic structure, here we detected fine-scale population differentiation in dromedaries across Asia and Africa by adopting a genome-wide approach. Global patterns of effective migration rates revealed pathways of dispersal after domestication, following historic caravan routes like the Silk and Incense Roads. Our results show that a Pleistocene bottleneck and Medieval expansions during the rise of the Ottoman empire have shaped genome-wide diversity in modern dromedaries. By understanding subtle population structure we recognize the value of small, locally adapted populations and appeal for securing genomic diversity for a sustainable utilization of this key desert species.
Selective breeding has led to gradual changes at the genome level of horses. Deciphering selective pressure patterns is progressive to understand how breeding strategies have shaped the sport horse genome; although, little is known about the genomic regions under selective pressures in sport horse breeds. The major goal of this study was to shed light on genomic regions and biological pathways under selective pressures in sport horses. In this study, whole-genome sequences of 16 modern sport and 35 non-sport horses were used to investigate the genomic selective signals of sport performance, by employing fixation index, nucleotide diversity, and Tajima’s D approaches. A total number of 49 shared genes were identified using these approaches. The functional enrichment analysis for candidate genes revealed novel significant biological processes related to musculoskeletal system development, such as limb development and morphogenesis, having been targeted by selection in sport breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.