Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.
Highlights d Brain organoids preserve gene expression networks despite elevated metabolic stress d Chimpanzee organoids enable studies of the evolution of human brain development d Primary and organoid samples reveal 261 human-specific gene expression changes d Human radial glia exhibit increased mTOR activation compared to non-human primates
A technology to record membrane potential from multiple neurons, simultaneously, in behaving animals will have a transformative impact on neuroscience research 1,2 . Genetically encoded voltage indicators are a promising tool for these purposes, but were so far limited to single-cell recordings with marginal signal to noise ratio (SNR) in vivo [3][4][5] . We developed improved near infrared voltage indicators, high speed microscopes and targeted gene expression schemes which enabled recordings of supra-and subthreshold voltage dynamics from multiple neurons simultaneously in mouse hippocampus, in vivo. The reporters revealed sub-cellular details of Reprints and permissions information is available at www.nature.com/reprintsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.