Increasing the number of threats against software vulnerabilities and rapidly growing data breaches have become a key concern for both the IT industry and stakeholders. Developing secure software systems when there is a high demand for software products from individuals as well as the organizations is in itself a big challenge for the designers and developers. Meanwhile, adopting traditional and informal learnings to address security issues of software products has made it easier for cyber-criminals to expose software vulnerabilities. Hence, it is imperative for the security practitioners to employ a symmetric mechanism so as to achieve the desired level of software security. In this context, a decision-making approach is the most symmetrical technique to assess the security of software in security tactics perspective. Since the security tactics directly address the quality attribute concerns, this symmetric approach will be highly effective in making the software systems more secure. In this study, the authors have selected three main attributes and fifteen sub-attributes at level 1 and level 2, respectively, with ten different software of an institute as alternatives. Furthermore, this study uses a fuzzy-based symmetrical decision-making approach to assess the security of software with respect to tactics. Fuzzy Analytic Network Process (F-ANP) is applied to evaluate the weights of criteria and fuzzy-Symmetrical technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used to determine impact of alternatives. The proposed symmetrical assessment in this study will be beneficial for both the designers and developers to categorize and prioritize the security attributes and understand the importance of security tactics during software development life cycle.
The growth of the Internet has expanded the amount of data expressed by users across multiple platforms. The availability of these different worldviews and individuals’ emotions empowers sentiment analysis. However, sentiment analysis becomes even more challenging due to a scarcity of standardized labeled data in the Bangla NLP domain. The majority of the existing Bangla research has relied on models of deep learning that significantly focus on context-independent word embeddings, such as Word2Vec, GloVe, and fastText, in which each word has a fixed representation irrespective of its context. Meanwhile, context-based pre-trained language models such as BERT have recently revolutionized the state of natural language processing. In this work, we utilized BERT’s transfer learning ability to a deep integrated model CNN-BiLSTM for enhanced performance of decision-making in sentiment analysis. In addition, we also introduced the ability of transfer learning to classical machine learning algorithms for the performance comparison of CNN-BiLSTM. Additionally, we explore various word embedding techniques, such as Word2Vec, GloVe, and fastText, and compare their performance to the BERT transfer learning strategy. As a result, we have shown a state-of-the-art binary classification performance for Bangla sentiment analysis that significantly outperforms all embedding and algorithms.
Educational data generated through various platforms such as e-learning, e-admission systems, and automated result management systems can be effectively processed through educational data mining techniques in order to gather highly useful insights into students’ performance. The prediction of student performance from historical academic data is a highly desirable application of educational data mining. In this regard, there is an urgent need to develop an automated technique for student performance prediction. Existing studies on student performance prediction primarily focus on utilizing the conventional feature representation schemes, where extracted features are fed to a classifier. In recent years, deep learning has enabled researchers to automatically extract high-level features from raw data. Such advanced feature representation schemes enable superior performance in challenging tasks. In this work, we examine the deep neural network model, namely, the attention-based Bidirectional Long Short-Term Memory (BiLSTM) network to efficiently predict student performance (grades) from historical data. In this article, we have used the most advanced BiLSTM combined with an attention mechanism model by analyzing existing research problems, which are based on advanced feature classification and prediction. This work is really vital for academicians, universities, and government departments to early predict the performance. The superior sequence learning capabilities of BiLSTM combined with attention mechanism yield superior performance compared to the existing state-of-the-art. The proposed method has achieved a prediction accuracy of 90.16%.
Intrusion detection is crucial in computer network security issues; therefore, this work is aimed at maximizing network security protection and its improvement by proposing various preventive techniques. Outlier detection and semisupervised clustering algorithms based on shared nearest neighbors are proposed in this work to address intrusion detection by converting it into a problem of mining outliers using the network behavior dataset. The algorithm uses shared nearest neighbors as similarity, judges whether it is an outlier according to the number of nearest neighbors of a data point, and performs semisupervised clustering on the dataset where outliers are deleted. In the process of semisupervised clustering, vast prior knowledge is added, and the dataset is clustered according to the principle of graph segmentation. The novelty of the proposed algorithm lies in outlier detection while effectively avoiding the dependence on parameters, thus eliminating the influence of outliers on clustering. This article uses real datasets: lypmphography and glass for simulation purposes. The simulation results show that the algorithm proposed in this paper can effectively detect outliers and has a good clustering effect. Furthermore, the experimentation reveals that the outlier detection-based SCA-SNN algorithm has the best practical effect on the dataset without outliers, clearly validating the clustering performance of the outlier detection-based SCA-SNN algorithm. Furthermore, compared to the other state-of-the-art anomaly detection method, it was revealed that the anomaly detection technology based on outlier mining does not require a training process. Thus, they overcome the current anomaly detection problems caused due to incomplete normal patterns in training samples.
According to the security breach level index, millions of records are stolen worldwide on every single day. Personal health records are the most targeted records on the internet, and they are considered sensitive, and valuable. Security and privacy are the most important parameters of cryptography and encryption. They reduce the availability of data on patients and healthcare to the appropriate personnel and ultimately lead to a barrier in the transfer of healthcare into a digital health system. Using a permission blockchain to share healthcare data can reduce security and privacy issues. According to the literature, most healthcare systems rely on a centralized system, which is more prone to security vulnerabilities. The existing blockchain-based healthcare schemes provide only a data-sharing framework, but they lack security and privacy. To cope with these kinds of security issues, we have designed a novel security algorithm that provides security as well as privacy with much better efficiency and a lower cost. Hence, in this research, we have proposed a patient healthcare framework that provides greater security, reliability, and authentication compared to existing blockchain-based access control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.