A dense map of genetic variation in the laboratory mouse genome will provide insights into the evolutionary history of the species and lead to an improved understanding of the relationship between inter-strain genotypic and phenotypic differences. Here we resequence the genomes of four wild-derived and eleven classical strains. We identify 8.27 million high-quality single nucleotide polymorphisms (SNPs) densely distributed across the genome, and determine the locations of the high (divergent subspecies ancestry) and low (common subspecies ancestry) SNP-rate intervals for every pairwise combination of classical strains. Using these data, we generate a genome-wide haplotype map containing 40,898 segments, each with an average of three distinct ancestral haplotypes. For the haplotypes in the classical strains that are unequivocally assigned ancestry, the genetic contributions of the Mus musculus subspecies--M. m. domesticus, M. m. musculus, M. m. castaneus and the hybrid M. m. molossinus--are 68%, 6%, 3% and 10%, respectively; the remaining 13% of haplotypes are of unknown ancestral origin. The considerable regional redundancy of the SNP data will facilitate imputation of the majority of these genotypes in less-densely typed classical inbred strains to provide a complete view of variation in additional strains.
The Minimum Information for Biological and Biomedical Investigations (MIBBI) project provides a resource for those exploring the range of extant minimum information checklists and fosters coordinated development of such checklists.
SummaryTo better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 geneticallydiverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulinlike growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = )0.33, P = 0.01). This correlation became stronger if the shortlived strains with a median lifespan < 600 days were removed from the analysis (R = )0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.
SummaryThe National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin – the latter with and without rapamycin, and two drugs previously examined: 17‐α‐estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17‐α‐estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male‐specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α‐glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.