Acute hypoxia causes pulmonary vascular leak and is involved in the pathogenesis of pulmonary edema associated with inflammation, acute altitude exposure, and other critical illnesses. Reactive oxygen species, HIF-1 and VEGF have all been implicated in various hypoxic pathologies, yet the ROS-HIF-1-VEGF pathway in pulmonary vascular leak has not been defined. We hypothesized that the ROS-HIF-1-VEGF pathway has an important role in producing hypoxia-induced pulmonary vascular leak. Human pulmonary artery endothelial cell monolayers (HPAEC) were exposed to either normoxia (21% O2) or acute hypoxia (3% O2) for 24 h and monolayer permeability, H2O2, nuclear HIF-1α, and cytosolic VEGF were determined. HPAEC were treated with antioxidant cocktail (AO: ascorbate, glutathione, and α-tocopherol), HIF-1 siRNA, or VEGF soluble binding protein (sFlt-1) to delineate the role of the ROS-HIF-1-VEGF pathway in hypoxia-induced HPAEC leak. Additionally, mice exposed to hypobaric hypoxia (18,000 ft, 10% O2) were treated with the same antioxidant to determine if in-vitro responses corresponded to in-vivo hypoxia stress. Hypoxia increased albumin permeability, H2O2 production, nuclear HIF-1α, and cytosolic VEGF concentration. Treatment with an AO lowered the hypoxia-induced HPAEC monolayer permeability as well as elevation of HIF-1α and VEGF. Treatment of hypoxia-induced HPAEC with either a siRNA designed against HIF-1α or VEGF antagonist soluble fms-like tyrosine kinase (sFlt)-1 decreased monolayer permeability. Mice treated with AO and exposed to hypobaric hypoxia (18,000 ft, 10% O2) had less pulmonary vascular leak than those that were untreated. Our data suggest that hypoxia-induced permeability is due, in part, to the ROS-HIF-1α-VEGF pathway.
Hemoglobin-based oxygen carriers (HBOC) have been primarily studied for blood loss treatment. More recently infusions of HBOC in euvolemic subjects have been proposed for a wide variety of potential therapies in which increased tissue oxygenation would be beneficial. However, compared with the exchange transfusion models to study blood loss, less is known about HBOC oxygen delivery and vasoacitvity when it is infused in euvolemic subjects. We hypothesized that HBOC [polymerized bovine hemoglobin (PBvHb)] infusion creating hypervolemia would increase oxygen delivery to tissues during acute global hypoxia. Vascular oxygen content and hemodynamics were determined after euvolemic rats were infused with 3 ml of either lactated Ringer or PBvHb solution (13 g/dl, 1.3 g/kg) during acute hypoxia (FIO2 = 10%, 4 h) or normoxia (FIO2 = 21%) exposure. Our data demonstrated that compared with Ringer-infused animals, in hypoxia and normoxia, PBvHb treatment improved oxygen content but raised mean arterial pressure, lowered stroke volume, heart rate, and cardiac index, which resulted in a net reduction in blood flow and oxygen delivery to the tissues. The PBvHb vasoactive effect was similar in magnitude and direction as to the Ringer-infused animals treated with a nitric oxide synthase inhibitor nitro-l-arginine, suggesting the PBvHb effect is mediated via nitric oxide scavenging. We conclude that infusion of PBvHb is not likely to be useful in treating global hypoxia under these conditions.
Hemoglobin (Hb)-based oxygen carriers (HBOCs) are being developed as a potential therapy for increasing tissue oxygenation, yet they have not reached their full potential because of unwanted hemodynamic side effects (vasoconstriction, low cardiac output, and oxygen delivery) due in part to nitric oxide (NO) scavenging by cell-free Hb. It may be possible to overcome the NO scavenging effect by coinfusing S-nitrosylated (SNO) HBOC along with unmodified HBOC. SNO-HBOC, like free Hb, may act as an NO donor in low-oxygen conditions. We hypothesized that an unaltered HBOC, polymerized bovine Hb (PBvHb), coinfused with an SNO-PBvHb, would improve hemodynamics and oxygen delivery during hypoxia. Vascular oxygen content and hemodynamics were determined after euvolemic rats were infused (3 ml) with lactated Ringer's solution, PBvHb, SNO-PBvHb, or PBvHb plus SNO-PBvHb (1:10) during normoxia or acute hypoxia (fraction of inspired oxygen = 10%, 120 min). Hemodynamic side effects resulting from PBvHb infusion (vasoconstriction, elevated pulmonary blood pressure, and reduced cardiac output) were offset by SNO-PBvHb in acute hypoxic, but not normoxic, conditions. These data support the potential use of HBOC mixed with SNO-HBOC for the treatment of conditions in which acute hypoxia is present, such as tumor oxygenation, wound healing, hemorrhagic trauma, and sickle cell and hemolytic anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.