Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems.
No abstract
Over the past century, the potential for aquatic species to expand their ranges in Europe has been enhanced both as a result of the construction of new canals and because of increased international trade. A complex network of inland waterways now connects some previously isolated catchments in southern (Caspian, Azov, Black, Mediterranean seas) and northern (Baltic, North, Wadden, White seas) Europe, and these waterways act as corridors for nonnative species invasions. We have developed a conceptual risk assessment model for invasive alien species introductions via European inland waterways, with specific protocols that focus on the development of environmental indicators within the socioeconomic context of the driving forces-pressures-state-impact-response framework. The risk assessment protocols and water quality indicators on alien species were tested for selected ecosystems within 3 main European invasion corridors, and these can be recommended for application as part of the Common Implementation Strategy of the European Commission Water Framework Directive, which aims to provide a holistic risk-based management of European river basins. The conceptual structure of the online Risk Assessment Toolkit for aquatic invasive alien species is provided and includes 3 main interlinked components: online risk assessment protocols, an early warning system, and an information transmitter for risk communication to end users.
The distribution and abundance of the invasive ctenophore Mnemiopsis leidyi in the Bornholm Basin, an important spawning ground of several fish stocks, and in adjacent areas in the central Baltic Sea was studied in November 2007. The study showed that M. leidyi were relatively small (body length 18.6 ± 7.6 mm) and they were patchily distributed over a large part of the investigated area. Specimens were found on 68 and 59% of stations sampled with a Bongo net (n=39) and an Isaac-Kidd midwater trawl (n=51), respectively. Vertically, the highest densities of M. leidyi occurred at 40 to 60 m around the halocline. Horizontally, the highest abundances were found north and west of Bornholm, but relatively high densities were also observed in the Slupsk Furrow. The mean abundance was 1.58 ± 2.12 ind. m -2 , the peak abundance was 8.92 ind. m -2 , and the average and peak population density were 0.03 ± 0.05 and 0.28 ind. m -3 , respectively. The abundances are low compared to densities recently observed in other areas of the Baltic region (e. g. Limfjorden, Åland Sea) and the estimated predation impact on zooplankton by M. leidyi was negligible in November 2007. However, because of the ctenophore's wide distribution in the central Baltic Sea, its ability for rapid population growth, and its potential influence on fish stocks by competing for food and by preying on fish eggs and newly hatched larvae, close monitoring of the future development of M. leidyi in the Baltic Sea is strongly recommended.
Eurasian otter populations strongly declined and partially disappeared due to global and local causes (habitat destruction, water pollution, human persecution) in parts of their continental range. Conservation strategies, based on reintroduction projects or restoration of dispersal corridors, should rely on sound knowledge of the historical or recent consequences of population genetic structuring. Here we present the results of a survey performed on 616 samples, collected from 19 European countries, genotyped at the mtDNA control-region and 11 autosomal microsatellites. The mtDNA variability was low (nucleotide diversity = 0.0014; average number of pairwise differences = 2.25), suggesting that extant otter mtDNA lineages originated recently. A star-shaped mtDNA network did not allow outlining any phylogeographic inference. Microsatellites were only moderately variable (H o = 0.50; H e = 0.58, on average across populations), the average allele number was low (observed A o = 4.9, range 2.5-6.8; effective A e = 2.8; range 1.6-3.7), suggesting small historical effective population size. Extant otters likely originated from the expansion of a single refugial population. Bayesian clustering and landscape genetic analyses however indicate that local populations are genetically differentiated, perhaps as consequence of post-glacial demographic fluctuations and recent isolation. These results delineate a framework that should be used for implementing conservation programs in Europe, particularly if they are based on the reintroduction of wild or captive-reproduced otters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.