HIV disease progression is affected by HIV-1 subtype. This finding may impact decisions on when to initiate antiretroviral therapy and may have implications for future trials of HIV-1 vaccines aimed at slowing disease progression.
APOBEC-mediated cytidine deamination of HIV-1 genomes during reverse transcription has been shown to be a potent mechanism of host restriction for HIV-1 infection ex vivo and in vitro. However, this defense system can be overcome by the viral protein Vif. Unlike other mechanisms of host restriction, the APOCEC-Vif interaction leaves an imprint on integrated proviruses in the form of G-->A hypermutation. In the current work we systematically studied levels, contexts, and patterns of HIV-1 hypermutation in vivo. The analysis of 24 full-genome HIV-1 sequences retrieved from primary PBMCs, representing infections with several HIV-1 clades, and the inclusion of 7 cognate pairs of hypermutated/non-hypermutated sequences derived from the same patient sample, provided a comprehensive view of the characteristics of APOBEC-mediated restriction in vivo. Levels of hypermutation varied nearly 5-fold among the studied proviruses. GpG motifs were most frequently affected (22/24 proviruses). Levels of hypermutation varied across the genome. The reported "twin peak" pattern of hypermutation was observed in 18/24 hypermutants, but the remainder exhibited singular non-conforming patterns. These data suggest considerable complexity in the interplay of host restriction and viral defense during HIV-1 infection.
The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or “signatures” and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.
HIV-1 diversity, frequency of recombinants, and dual infection were determined in two populations with different HIV risk behavior. A high-risk cohort of 600 female bar workers and a normal-risk population of 1,108 antenatal clinic attendees and blood donors were recruited. Behavioral data were assessed and blood for HIV- 1 diagnosis and genotyping was sampled. HIV-1 subtypes were defined through the multiregion hybridization assay (MHA(acd)). HIV-1 prevalence differed significantly among the two populations. The prevalence was 67.8% in the population of bar workers and 17% in the normal-risk population (antenatal care attendees and blood donors). Within the normal-risk population the HIV-1 prevalence was lowest in the group of volunteer blood donors. The frequency of HIV-1 infection in women was 1.7 times higher than in men. The overall subtype distribution was A (8.5%), C (40.8%), D (3.8%), AC (25.4%), AD (5.4%), CD (8.8%), and ACD (7.3%). In the high-risk population there was a higher percentage of HIV-1 recombinant strains (54% vs. 40%, p < 0.05) and a higher frequency of dual infections (19% vs. 9%, p < 0.02) compared to the normal-risk population. High-risk populations may play an important role in the evolution of HIV, as they can provide an opportunity for the virus to coinfect, recombine, and adapt to the host-specific genetic background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.