Background Metabolic diseases are risk factors for severe Coronavirus disease (COVID-19), which have a close relationship with metabolic dysfunction-associated fatty liver disease (MAFLD). Aims To evaluate the presence of MAFLD and fibrosis in patients with COVID-19 and its association with prognosis. Methods Retrospective cohort study. In hospitalized patients with COVID-19, the presence of liver steatosis was determined by computed tomography scan (CT). Liver fibrosis was assessed using the NAFLD fibrosis score (NFS score), and when altered, the AST to platelet ratio index (APRI) score. Mann-Whitney U, Student´s t-test, logistic regression analysis, Kaplan-Meier curves and Cox regression analysis were used. Results 432 patients were analyzed, finding steatosis in 40.6%. No differences in pulmonary involvement on CT scan, treatment, or number of days between the onset of symptoms and hospital admission were found between patients with and without MAFLD. The presence of liver fibrosis was associated with higher severity scores, higher levels of inflammatory markers, requirement of mechanical ventilation, incidence of acute kidney injury (AKI), and higher mortality than patients without fibrosis. Conclusion The presence of fibrosis rather than the presence of MAFLD is associated with increased risk for mechanical ventilation, development of AKI, and higher mortality in COVID-19 patients.
Coronavirus disease 2019 is a worldwide health challenge. Liver steatosis diagnosis based on imaging studies has been implicated in poor outcomes of COVID-19 pneumonia, but results are inconsistent. The Dallas Steatosis Index (DSI) is an available calculator developed to identify patients with non-alcoholic fatty liver disease (NAFLD). We hypothesized that it would be associated with in-hospital mortality, intensive care unit admission (ICU), and invasive mechanical ventilation (IMV). We conducted a retrospective cohort study on inpatients with confirmed COVID-19 pneumonia between February 26 and April 11, 2020. We computed the DSI on admission, and patients with high DSI were considered with NAFLD. We employed logistic regression to study the association between NAFLD, mortality, ICU admission, and IMV. We studied the association between liver steatosis on computed tomography (CT) and these outcomes, and also between Metabolic Associated Fatty Liver Disease (MAFLD) based on CT findings and risk factors and the outcomes. 470 patients were included; 359 had NAFLD according to the DSI. They had a higher frequency of type 2 diabetes (31% vs 14%, p < 0.001), obesity (58% vs 14%, p < 0.001), and arterial hypertension (34% vs 22%, p = 0.02). In univariable analysis, NAFLD was associated with mortality, ICU admission, and IMV. Liver steatosis by CT and MAFLD were not associated with any of these outcomes. In multivariable logistic regression, high DSI remained significantly associated with IMV and death. High DSI, which can be easily computed on admission, was associated with IMV and death, and its use to better stratify the prognosis of these patients should be explored. On the other hand, liver steatosis by CT and MAFLD were not associated with poor outcomes.
IntroductionCoronavirus disease (COVID-19) is a global pandemic. Vitamin D deficiency has been associated with susceptibility to infectious disease. In this study, the association between COVID-19 outcomes and vitamin D levels in patients attending a COVID-19 reference center in Mexico City are examined.MethodsConsecutive patients with confirmed COVID-19 were evaluated. All patients underwent clinical evaluation and follow-up, laboratory measurements and a thoracic computerized tomography, including the measurement of epicardial fat thickness. Low vitamin D was defined as levels <20 ng/ml (<50nmol/L) and deficient Vitamin D as a level ≤12 ng/ml (<30 nmol/L).ResultsOf the 551 patients included, low vitamin D levels were present in 45.6% and deficient levels in 10.9%. Deficient Vitamin D levels were associated with mortality (HR 2.11, 95%CI 1.24–3.58, p = 0.006) but not with critical COVID-19, adjusted for age, sex, body-mass index and epicardial fat. Using model-based causal mediation analyses the increased risk of COVID-19 mortality conferred by low vitamin D levels was partly mediated by its effect on D-dimer and cardiac ultrasensitive troponins. Notably, increased risk of COVID-19 mortality conferred by low vitamin D levels was independent of BMI and epicardial fat.ConclusionVitamin D deficiency (≤12 ng/ml or <30 nmol/L), is independently associated with COVID-19 mortality after adjustment for visceral fat (epicardial fat thickness). Low vitamin D may contribute to a pro-inflammatory and pro-thrombotic state, increasing the risk for adverse COVID-19 outcomes.
Background Increased adiposity and visceral obesity have been linked to adverse COVID-19 outcomes. The amount of epicardial adipose tissue (EAT) may have relevant implications given its proximity to the heart and lungs. Here, we explored the role of EAT in increasing the risk for COVID-19 adverse outcomes. Methods We included 748 patients with COVID-19 attending a reference center in Mexico City. EAT thickness, sub-thoracic and extra-pericardial fat were measured using thoracic CT scans. We explored the association of each thoracic adipose tissue compartment with COVID-19 mortality and severe COVID-19 (defined as mortality and need for invasive mechanical ventilation), according to the presence or absence of obesity. Mediation analyses evaluated the role of EAT in facilitating the effect of age, body mass index and cardiac troponin levels with COVID-19 outcomes. Results EAT thickness was associated with increased risk of COVID-19 mortality (HR 1.18, 95% CI 1.01–1.39) independent of age, gender, comorbid conditions and BMI. Increased EAT was associated with lower SpO2 and PaFi index and higher levels of cardiac troponins, D-dimer, fibrinogen, C-reactive protein, and 4 C severity score, independent of obesity. EAT mediated 13.1% (95% CI 3.67–28.0%) and 5.1% (95% CI 0.19–14.0%) of the effect of age and 19.4% (95% CI 4.67–63.0%) and 12.8% (95% CI 0.03–46.0%) of the effect of BMI on requirement for intubation and mortality, respectively. EAT also mediated the effect of increased cardiac troponins on myocardial infarction during COVID-19. Conclusion EAT is an independent risk factor for severe COVID-19 and mortality independent of obesity. EAT partly mediates the effect of age and BMI and increased cardiac troponins on adverse COVID-19 outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.