Significance Using microfiltration as a liquid biopsy for the recovery of circulating tumor cells (CTCs) has revealed an accompanying macrophage subset that we use as a highly sensitive biomarker for solid tumors. We supply evidence that this circulating giant cell is a subset of disseminated tumor-associated macrophages capable of binding CTCs in peripheral blood of cancer patients. The presence of this cell expands the concept of using a liquid biopsy not only to indicate cancer presence but also to track cancer treatment effects sequentially using other circulating blood cells. Further, we supply observational evidence hypothesizing a metastasis pathway model in which CTCs migrate with pro-angiogenic macrophages, linking cancer cell intravasation, migration, and extravasation and the formation of metastatic microenvironments.
Recent studies reporting hundreds, to thousands, of circulating tumor cells (CTCs) in the blood of cancer patients have raised questions regarding the prevalence of CTCs, as enumerated by the CellSearch V R CTC Test. Although CellSearch has been shown to consistently detect clinically relevant CTCs; the ability to only capture EpCAM positive cells has led to speculation that it captures limited subsets of CTCs. In contrast, alternative approaches to CTC isolation are often cited as capturing large numbers of CTCs from patient blood. Not surprisingly the number of cells isolated by alternative approaches show poor correlations when compared to CellSearch, even when accounting for EpCAM presence or absence. In an effort to address this discrepancy, we ran an exploratory method comparison study to characterize and compare the CTC subgroups captured from duplicate blood samples from 30 breast and prostate cancer patients using a microfiltration system (CellSieve TM ) and CellSearch. We then categorized the CellSieve Cytokeratin(CK)1/CD452/DAPI1 cells into five morphologically distinct subpopulations for correlative analysis. Like other filtration techniques, CellSieve isolated greater numbers of CK1/CD452 cells than CellSearch. Furthermore, analysis showed low correlation between the total CK1/CD452 cells captured by these two assays, regardless of EpCAM presence. However, subgrouping of CK1/CD452/DAPI1 cells based on distinct cytokeratin staining patterns and nuclear morphologies elucidated a subpopulation correlative to CellSearch. Using method comparison analyses, we identified a specific CTC morphology which is highly correlative between two distinct capture methods. These data suggests that although various morphologic CTCs with similar phenotypic expressions are present in the blood of cancer patients, the clinically relevant cells isolated by CellSearch can potentially be identified using nonEpCAM dependent isolation.
Circulating tumor cells (CTCs) disseminated into peripheral blood from a primary, or metastatic, tumor can be used for early detection, diagnosis and monitoring of solid malignancies. CTC isolation by size exclusion techniques have long interested researchers as a simple broad based approach, which is methodologically diverse for use in both genomic and protein detection platforms. Though a variety of these microfiltration systems are employed academically and commercially, the limited ability to easily alter microfilter designs has hindered the optimization for CTC capture. To overcome this problem, we studied a unique photo-definable material with a scalable and mass producible photolithographic fabrication method. We use this fabrication method to systematically study and optimize the parameters necessary for CTC isolation using a microfiltration approach, followed by a comparison to a “standard” filtration membrane. We demonstrate that properly designed microfilters can capture MCF-7 cancer cells at rate of 98 ± 2% if they consist of uniform patterned distributions, ≥160 000 pores, and 7 μm pore diameters.
Metastatic cases of breast cancer pose the primary challenge in clinical management of this disease, demanding the identification of effective therapeutic strategies which remain wanting. In this study, we report that elevated levels of α-tubulin acetylation are a sufficient cause of metastatic potential in breast cancer. In suspended cell culture conditions, metastatic breast cancer cells exhibited high α-tubulin acetylation levels that extended along microtentacle protrusions. Mutation of the acetylation site on α-tubulin and enzymatic modulation of this post-translational modification exerted a significant impact on microtentacle frequency and the re-attachment of suspended tumor cells. Reducing α-tubulin acetylation significantly inhibited migration but did not affect proliferation. In an analysis of over 140 matched primary and metastatic tumors from patients, we found that acetylation was maintained and in many cases increased in lymph node metastases compared to primary tumors. Proteomic analysis of an independent cohort of over 390 patient specimens further documented the relationship between increased α-tubulin acetylation and the aggressive behaviors of basal-like breast cancers, with a trend toward increased risk of disease progression and death in patients with high intensity α-tubulin acetylation in primary tumors. Taken together, our results identify a tight correlation between acetylated α-tubulin levels and aggressive metastatic behavior in breast cancer, with potential implications for the definition of a simple prognostic biomarker in breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.