Collagen alpha-1(V) chain, encoded by the COL5A1 gene, plays a crucial role in abundant fibrillar collagens supporting many tissues in the body containing type I collagen and appears to regulate the association between heterotypic fibers composed of both type I and type V collagen occurring among others in muscles, tendons and ligaments. Taking this fact into consideration we decided to examine the association between COL5A1 rs12722 and rs13946 polymorphisms, individually and as inferred haplotypes, with anterior cruciate ligament rupture risk (ACLR) in professional soccer players. A total of 134 male professional soccer players with surgically diagnosed primary anterior cruciate ligament ruptures and 211 apparently healthy male professional soccer players, who were without any self-reported history of ligament or tendon injury, were included in the study. Both the cases and the healthy controls were recruited from the same soccer teams, of a similar age category, and had a comparable level of exposure to anterior cruciate ligament injury. Genomic DNA was extracted from oral epithelial cells using GenElute Mammalian Genomic DNA MiniprepKit. All samples were genotyped for the rs12722 and rs13946 polymorphisms using a Rotor-Gene realtime polymerase chain reaction. Statistically significant differences in the genotype frequencies for the COL5A1 rs13946 polymorphisms in dominant modes of inheritance occurred (p = 0.039). Statistically significant differences were documented only in the dominant model under the representation tendency of the C-C haplotype in the ACLR group compared to controls (p = 0.038). Our results suggest that variation in the COL5A1 gene may be one of the non-modifiable factors associated with the ACL injury in professional soccer players. The C-C rs12722-rs13946 haplotype provides a protective effect against the ACL tear.
The aim of the present study was to analyse VEGFA rs699947, rs1570360, and rs2010963 polymorphisms with susceptibility to anterior cruciate ligament rupture (ACLR) in a Polish population. The study included 412 physically active Caucasian participants. The study group consisted of 222 individuals with surgically diagnosed primary ACLR qualified for ligament reconstruction (ACLR group). The control group consisted of 190 apparently healthy participants without any history of ACLR (CON group). Three polymorphisms within the VEGFA (rs699947, rs1570360, and rs2010963) gene were chosen for investigation due to their significance in the angiogenesis signalling pathway and previous associations with risk of ACLRs. Both single-locus and haplotype-based analyses were conducted. No significant differences in the allele and genotype frequency distributions were noted for the rs699947 and rs1570360 polymorphisms. In contrast, rs2010963 was associated with risk of ACLR in the codominant (p=0.047) and recessive model (p=0.017). In the latter, the CC genotype was overrepresented among individuals with ACL rupture (23.4% vs 14.2%, OR=1.85 [1.11-3.08]). Two VEGFA haplotypes were associated with ACLR under the additive (global score=11.39, p=0.022) and dominant model (global score=11.61, p=0.020). The [C;G;G] haplotype was underrepresented in the ACLR group (52.2% vs. 60.3%), whereas the [C;G;C] haplotype was overrepresented (2.9% vs 0.5%). The results obtained suggest a potential correlation between the VEGFA rs2010963 polymorphism and ACLR risk, suggesting that harbouring this specific C allele may be an unfavourable risk factor for a knee injury in Caucasian participants from Poland.
Grishina, EE, Zmijewski, P, Semenova, EA, Cięszczyk, P, Humińska-Lisowska, K, Michałowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602–2607, 2019—Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.
BackgroundOverexpression of HSPA1A and HSPB1 has been shown to indicate stress and the degradation of damaged proteins. Therefore, the expression of these genes is often evaluated during exercise. Vitamin supplementation in young athletes may affect the expression of these genes, and help to maintain health and improve the effects of training.MethodsFourteen top junior female athletes (age 14–15y ± 0.3 SD, body mass 51 kg ± 5 SD, and BMI of 20.15 ± 0.9 SD, time in professional training 8.5 y ± 0.5 SD) attended a conditioning camp that included meals planned by a team dietitian. To examine the effects of vitamin supplementation on antioxidant status we supplemented the athletes with either vitamin A (16 ug/kg/day), vitamin C (8 mg/kg/day) and vitamin E (1 mg/kg/day) or an inert placebo. Blood samples were taken before and after (12 h post) the camp to assess the relative expression of HSPA1A and HSPB1 mRNA in leukocytes via quantitative reverse transcription polymerase chain reaction (qRT-PCR).ResultsOverall, participants trained ~135 min daily (1345 min total). No statistically significant differences in HSPA1A and HSPB1 expression were observed between the groups before the camp. In the unsupplemented group, there was a non-statistically significant increase in HSPA1A expression (100% change) and a significant increase (37% change, p < 0.05) in HSPB1 expression over the study period. The supplemented group experienced a significant decrease in HSPA1A (40% change, p = 0.01) and HSPB1 (25% change p = 0.03) expression over the study period.ConclusionOur results indicate that supplementation with antioxidant vitamins decreases HSPA1A and HSPB1 mRNA expression in leukocytes, and thereby may reduce exercise-induced stress in young athletes, not only during training, but also in sports competitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.