A novel series of benzofuran derivatives as potential positron emission tomography (PET) tracers targeting amyloid plaques in Alzheimer's disease (AD) were synthesized and evaluated. The syntheses of benzofurans were successfully achieved by an intramolecular Wittig reaction between triphenylphosphonium salt and 4-nitrobenzoyl chloride. When in vitro binding studies using AD brain gray matter homogenates were carried out with a series of benzofuran derivatives, all the derivatives examined displayed high binding affinities with K(i) values in the subnanomolar range. Among these benzofuran derivatives, compound 8, 5-hydroxy-2-(4-methyaminophenyl)benzofuran, showed the lowest K(i) value (0.7 nM). In vitro fluorescent labeling of AD sections with compound 8 intensely stained not only amyloid plaques, but also neurofibrillary tangles. The (11)C labeled compound 8, [(11)C]8, was prepared by reacting the normethyl precursor, 5-hydroxy-2-(4-aminophenyl)benzofuran, with [(11)C]methyl triflate. The [(11)C]8 displayed moderate lipophilicity (log P = 2.36), very good brain penetration (4.8%ID/g at 2 min after iv injection in mice), and rapid washout from normal brains (0.4 and 0.2%ID/g at 30 and 60 min, respectively). In addition, this PET tracer showed in vivo amyloid plaque labeling in APP transgenic mice. Taken together, the data suggest that a relatively simple benzofuran derivative, [(11)C]8, may be a useful candidate PET tracer for detecting amyloid plaques in the brains of patients with Alzheimer's disease.
Previous studies on indium-111 (111In) labeling of polypeptides and peptides using cyclic diethylenetriaminepentaacetic dianhydride (cDTPA) as a bifunctional chelating agent (BCA) have indicated that DTPA might be a useful BCA for 111In labeling of polypeptides at high specific activities when DTPA can be incorporated without inducing intra- or intermolecular cross-linking. To investigate this hypothesis, a monoreactive DTPA derivative with a maleimide group as the peptide binding site (MDTPA) was designed and synthesized. A monoclonal antibody (OST7, IgG1) was used as a model polypeptide, and conjugation of MDTPA with OST7, 111In radiolabeling of MDTPA-OST7, and the stability of 111In-MDTPA-OST7 were investigated using cDTPA and benzyl-EDTA derivatives as references. SDS-PAGE analysis demonstrated that while cDTPA induced intramolecular cross-linking, no such undesirable side reactions were observed with MDTPA. MDTPA generated 111In-labeled OST7 with high radiochemical yields at higher specific activities than those produced using cDTPA and benzyl-EDTA derivatives as the BCAs. Incubation of each 111In-labeled OST7 in human serum indicated that MDTPA generated 111In-labeled OST7 of much higher and a little lower stability than those derived from cDTPA and benzyl-EDTA derivatives, respectively. These findings indicated that the low in vivo stability of cDTPA-conjugated antibody reported previously is not attributable to low stability of 111In-DTPA but to formation of intramolecular cross-linking during cDTPA conjugation reactions. The present study also indicated that MDTPA and its precursor, the tetra-tert-butyl derivative of DTPA, would be useful BCAs for 111In radiolabeling of polypeptides that have rapid blood clearance with high specific activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.