Angioimmunoblastic lymphoma (AILT) is the second most common subtype of peripheral T-cell lymphoma (PTCL) and is characterized by dismal prognosis. Thus far, only a few studies have dealt with its molecular pathogenesis. We performed gene expression profile (GEP) analysis of six AILT, six anaplastic large cell lymphomas (ALCL), 28 PTCL-unspecified (PTCL/U), and 20 samples of normal T lymphocytes (including CD4 + , CD8 + , and activated and resting subpopulations), aiming to (a) assess the relationship of AILT with other PTCLs, (b) establish the relationship between AILT and normal T-cell subsets, and (c) recognize the cellular programs deregulated in AILT possibly looking for novel potential therapeutic targets. First, we found that AILT and other PTCLs have rather similar GEP, possibly sharing common oncogenic pathways. Second, we found that AILTs are closer to activated CD4 + , rather than to resting or CD8 + lymphocytes. Furthermore, we found that the molecular signature of follicular T helper cells was significantly overexpressed in AILT, reinforcing the idea that AILT may arise from such cellular counterpart. Finally, we identified several genes deregulated in AILT, including PDGFRA, REL, and VEGF. The expression of several molecules was then studied by immunohistochemistry on tissue microarrays containing 45 independent AILT cases. Notably, we found that the vascular endothelial growth factor (VEGF) was expressed not only by reactive cells, but also by neoplastic cells, and that nuclear factor-KB (NF-KB) activation is uncommon in AILT, as suggested by frequent exclusively cytoplasmic c-REL localization. Our study provides new relevant information on AILT biology and new candidates for possible therapeutic targets such as PDGFRA (platelet-derived growth factor A) and VEGF. [Cancer Res 2007;67(22):10703-10]
We previously purified a new esterase from the thermoacidophilic eubacterium Bacillus acidocaldarius whose N-terminal sequence corresponds to an open reading frame (ORF3) reported to show homology with the mammalian hormone-sensitive lipase (HSL)-like group of the esterase\lipase family. To compare the biochemical properties of this thermophilic enzyme with those of the homologous mesophilic and psychrophilic members of the HSL group, an overexpression system in Escherichia coli was established. The protein, expressed in soluble and active form at 10 mg\l E. coli culture, was purified to homogeneity and characterized biochemically. The enzyme, a 34 kDa monomeric protein, was demonstrated to be a Bd-type carboxylesterase (EC 3.1.1.1) on the basis of substrate specificity and the action of inhibitors. Among the p-nitrophenyl (PNP) esters tested the best substrate was PNP-exanoate with K m and k cat values of 11p2 µM (meanpS.D., n l 3) and 6610p880 s −" (meanpS.D., n l 3)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.