Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.
Plinio Sist 10,88 | Bonaventure Sonke 60 | J. Daniel Soto 21 | Cintia Rodrigues de Souza 24 | Juliana Stropp 89 | Martin J. P. Sullivan 35 | Ben Swanepoel 34 | Hans ter Steege 25,90 | John Terborgh 91,92 | Nicolas Texier 93 | Takeshi Toma 94 | Renato Valencia 95 | Luis Valenzuela 75 | Leandro Valle Ferreira 96 | Fernando Cornejo Valverde 97 | Tinde R. Van Andel 25 | Rodolfo Vasque 77 | Hans Verbeeck 61 | Pandi Vivek 22 | Abstract Aim:Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees.Location: Pan-tropical.Time period: Early 21st century. Major taxa studied: Woody plants.Methods: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results:Measuring the largest trees in tropical forests enables unbiased predictions of plot-and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50-70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions:Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change. K E Y W O R D Scarbon, climate change, forest structure, large trees, pan-tropical, REDD+, tropical forest ecology
Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which suggests that allometric scaling between stems and crowns may be tight, although insufficiently investigated to date. Here, we report the first broad-scale assessment of stem vs. crown scaling exponents using measurements of bole diameter (DBH), total height (H), and crown area (CA) made on 4148 trees belonging to 538 species in five biogeographic areas across the wet tropics. Allometries were fitted with power functions using ordinary least-squares regressions on log-transformed data. The inter-site variability and intra-site (sub-canopy vs. canopy trees) variability of the allometries were evaluated by comparing the scaling exponents. Our results indicated that, in contrast to both DBH-H and H-CA allometries, DBH-CA allometry shows no significant inter-site variation. This fairly invariant scaling calls for increased effort in documenting crown sizes as part of tree morphology. Stability in DBH-CA allometry, indeed, suggests that some universal constraints are sufficiently pervasive to restrict the exponent variation to a narrow range. In addition, our results point to inverse changes in the scaling exponent of the DBH-CA vs. DBH-H allometries when shifting from sub-canopy to canopy trees, suggesting a change in carbon allocation when a tree reaches direct light. These results pave the way for further advances in our understanding of niche partitioning in tree species, tropical forest dynamics, and to estimate AGB in tropical forests from remotely sensed images. (Résumé d'auteur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.