Background Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modelling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) towards an adult phenotype under defined conditions. Methods We systematically investigated cell composition, matrix and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We employed morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M-bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency-response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and NT-proBNP release; all are classical hallmarks of heart failure. Additionally, we demonstrate scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions We provide proof-of-concept for a universally applicable technology for the engineering of macro-scale human myocardium for disease modelling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.
Abstract-Pendrin is an anion exchanger expressed along the apical plasma membrane and apical cytoplasmic vesicles of type B and of non-A, non-B intercalated cells of the distal convoluted tubule, connecting tubule, and cortical collecting duct. Thus, Pds (Slc26a4) is a candidate gene for the putative apical anion-exchange process of the type B intercalated cell. Because apical anion exchange-mediated transport is upregulated with deoxycorticosterone pivalate (DOCP), we tested whether Pds mRNA and protein expression in mouse kidney were upregulated after administration of this aldosterone analogue by using quantitative real-time polymerase chain reaction as well as light and electron microscopic immunolocalization. In kidneys from DOCP-treated mice, Pds mRNA increased 60%, whereas pendrin protein expression in the apical plasma membrane increased 2-fold in non-A, non-B intercalated cells and increased 6-fold in type B cells. Because pendrin transports HCO 3 -and Cl -, we tested whether DOCP treatment unmasks abnormalities in acid-base or NaCl balance in Pds (-/-) mice. In the absence of DOCP, arterial pH, systolic blood pressure, and body weight were similar in Pds (ϩ/ϩ) and Pds (-/-) mice. After DOCP treatment, weight gain and hypertension were observed in Pds (ϩ/ϩ) but not in Pds (-/-) mice. Moreover, after DOCP administration, metabolic alkalosis was more severe in Pds (-/-) than Pds (ϩ/ϩ) mice. We conclude that pendrin is upregulated with aldosterone analogues and is critical in the pathogenesis of mineralocorticoid-induced hypertension and metabolic alkalosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.