Background The recent coronavirus disease (COVID-19) pandemic is taking a toll on the world’s health care infrastructure as well as the social, economic, and psychological well-being of humanity. Individuals, organizations, and governments are using social media to communicate with each other on a number of issues relating to the COVID-19 pandemic. Not much is known about the topics being shared on social media platforms relating to COVID-19. Analyzing such information can help policy makers and health care organizations assess the needs of their stakeholders and address them appropriately. Objective This study aims to identify the main topics posted by Twitter users related to the COVID-19 pandemic. Methods Leveraging a set of tools (Twitter’s search application programming interface (API), Tweepy Python library, and PostgreSQL database) and using a set of predefined search terms (“corona,” “2019-nCov,” and “COVID-19”), we extracted the text and metadata (number of likes and retweets, and user profile information including the number of followers) of public English language tweets from February 2, 2020, to March 15, 2020. We analyzed the collected tweets using word frequencies of single (unigrams) and double words (bigrams). We leveraged latent Dirichlet allocation for topic modeling to identify topics discussed in the tweets. We also performed sentiment analysis and extracted the mean number of retweets, likes, and followers for each topic and calculated the interaction rate per topic. Results Out of approximately 2.8 million tweets included, 167,073 unique tweets from 160,829 unique users met the inclusion criteria. Our analysis identified 12 topics, which were grouped into four main themes: origin of the virus; its sources; its impact on people, countries, and the economy; and ways of mitigating the risk of infection. The mean sentiment was positive for 10 topics and negative for 2 topics (deaths caused by COVID-19 and increased racism). The mean for tweet topics of account followers ranged from 2722 (increased racism) to 13,413 (economic losses). The highest mean of likes for the tweets was 15.4 (economic loss), while the lowest was 3.94 (travel bans and warnings). Conclusions Public health crisis response activities on the ground and online are becoming increasingly simultaneous and intertwined. Social media provides an opportunity to directly communicate health information to the public. Health systems should work on building national and international disease detection and surveillance systems through monitoring social media. There is also a need for a more proactive and agile public health presence on social media to combat the spread of fake news.
A unified statistical model is proposed to characterize turbulence-induced fading in underwater wireless optical communication (UWOC) channels in the presence of air bubbles and temperature gradient for fresh and salty waters, based on experimental data. In this model, the channel irradiance fluctuations are characterized by the mixture Exponential-Generalized Gamma (EGG) distribution. We use the expectation maximization (EM) algorithm to obtain the maximum likelihood parameter estimation of the new model. Interestingly, the proposed model is shown to provide a perfect fit with the measured data under all channel conditions for both types of water. The major advantage of the new model is that it has a simple mathematical form making it attractive from a performance analysis point of view.Indeed, we show that the application of the EGG model leads to closed-form and analytically tractable expressions for key UWOC system performance metrics such as the outage probability, the average biterror rate, and the ergodic capacity. To the best of our knowledge, this is the first-ever comprehensive channel model addressing the statistics of optical beam irradiance fluctuations in underwater wireless optical channels due to both air bubbles and temperature gradient. E. Zedini and M. Hamdi are with the College Underwater wireless optical communication (UWOC), channel modeling, distribution fitting, maximum likelihood estimation, expectation maximization algorithm, mixture models, performance analysis, outage probability, bit-error rate (BER), ergodic capacity. I. INTRODUCTION Underwater wireless optical communication (UWOC) systems have recently attracted considerable research attention as an appropriate and efficient transmission solution for a variety of underwater applications including offshore oil field exploration, oceanographic data collection, maritime archaeology, environmental monitoring, disaster prevention, and port security among others [1]. This rapidly growing interest stems from the recent advances in signal processing, digital communication, and low-cost visible light-emitting diodes (LEDs) and laser diodes (LD) that have the lowest attenuation in seawater [2]-[5]. UWOC systems, operating in the blue/green portion of the spectrum in the 400-550 nm wavelength band, promise high data rates, low-latency, high transmission security, and reduced energy consumption, compared with their acoustic counterparts [1], [6], [7]. Nevertheless, the reliability of such systems is highly affected by absorption and scattering effects [1] as well as underwater optical turbulence (UOT). The identification of an accurate description for the absorption and scattering effects in UWOC channels has been extensively addressed in several recent works [8]-[10]. UOT results from rapid changes in the refractive index of the water caused by temperature fluctuations, salinity variations as well as the presence of air bubbles in seawater that affects the propagation of optical signals [11]-[13]. In oceans, air bubbles are produced by breakin...
Internet of Things (IoT) is an innovative paradigm envisioned to provide massive applications that are now part of our daily lives. Millions of smart devices are deployed within complex networks to provide vibrant functionalities including communications, monitoring, and controlling of critical infrastructures. However, this massive growth of IoT devices and the corresponding huge data traffic generated at the edge of the network created additional burdens on the state-of-the-art centralized cloud computing paradigm due to the bandwidth and resources scarcity. Hence, edge computing (EC) is emerging as an innovative strategy that brings data processing and storage near to the end users, leading to what is called EC-assisted IoT. Although this paradigm provides unique features and enhanced quality of service (QoS), it also introduces huge risks in data security and privacy aspects. This paper conducts a comprehensive survey on security and privacy issues in the context of EC-assisted IoT. In particular, we first present an overview of EC-assisted IoT including definitions, applications, architecture, advantages, and challenges. Second, we define security and privacy in the context of EC-assisted IoT. Then, we extensively discuss the major classifications of attacks in EC-assisted IoT and provide possible solutions and countermeasures along with the related research efforts. After that, we further classify some security and privacy issues as discussed in the literature based on security services and based on security objectives and functions. Finally, several open challenges and future research directions for secure EC-assisted IoT paradigm are also extensively provided.
Background In December 2019, COVID-19 broke out in Wuhan, China, leading to national and international disruptions in health care, business, education, transportation, and nearly every aspect of our daily lives. Artificial intelligence (AI) has been leveraged amid the COVID-19 pandemic; however, little is known about its use for supporting public health efforts. Objective This scoping review aims to explore how AI technology is being used during the COVID-19 pandemic, as reported in the literature. Thus, it is the first review that describes and summarizes features of the identified AI techniques and data sets used for their development and validation. Methods A scoping review was conducted following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched the most commonly used electronic databases (eg, MEDLINE, EMBASE, and PsycInfo) between April 10 and 12, 2020. These terms were selected based on the target intervention (ie, AI) and the target disease (ie, COVID-19). Two reviewers independently conducted study selection and data extraction. A narrative approach was used to synthesize the extracted data. Results We considered 82 studies out of the 435 retrieved studies. The most common use of AI was diagnosing COVID-19 cases based on various indicators. AI was also employed in drug and vaccine discovery or repurposing and for assessing their safety. Further, the included studies used AI for forecasting the epidemic development of COVID-19 and predicting its potential hosts and reservoirs. Researchers used AI for patient outcome–related tasks such as assessing the severity of COVID-19, predicting mortality risk, its associated factors, and the length of hospital stay. AI was used for infodemiology to raise awareness to use water, sanitation, and hygiene. The most prominent AI technique used was convolutional neural network, followed by support vector machine. Conclusions The included studies showed that AI has the potential to fight against COVID-19. However, many of the proposed methods are not yet clinically accepted. Thus, the most rewarding research will be on methods promising value beyond COVID-19. More efforts are needed for developing standardized reporting protocols or guidelines for studies on AI.
In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.