2 Black-hole binary (BHB) systems comprise a stellar-mass black hole and a closely orbiting companion star. Matter is transferred from the companion to the black hole, forming an accretion disk, corona and jet structures. The resulting release of gravitational energy leads to emission of X-rays (1). The radiation is affected by special/general relativistic effects, and can serve as a probe of the properties of the black hole and surrounding environment, if the accretion geometry is properly identified. Two competing models describe the diskcorona geometry for the hard spectral state of BHBs, based on spectral and timing measurements (e.g., 2, 3). Measuring the polarization of hard X-rays reflected from the disk allows the geometry to be determined. The extent of the corona differs between the two models, affecting the strength of relativistic effects (e.g., enhancement of polarization fraction and rotation of polarization angle). Here, we report observational results on linear polarization of hard X-ray (19-181 keV) emission from a BHB, Cygnus X-1 (e.g., 4), in the hard state. The low polarization fraction, <8.6% (upper limit at 90% confidence level), and the alignment of the polarization angle with the jet axis show that the dominant emission is not influenced by strong gravity. When considered together with existing spectral and timing data, our result reveals that the accretion corona is either an extended structure, or is located far from the black hole in the hard state of Cygnus X-1.The two competing models describe the location of the hot corona and the accretion disk in the hard state of BHBs -the 'lamp-post corona' model (e.g., 5) and the 'extended corona' model (e.g., 6), as illustrated in Figure 1. In the lamp-post corona model, the size of the corona is small and it is located on the rotation axis of the black hole, close to the event horizon. The emission near the black hole is influenced by strong general/special relativistic effects. The extended
Strong magnetic fields, synchrotron emission, and Compton scattering are omnipresent in compact celestial X-ray sources. Emissions in the X-ray energy band are consequently expected to be linearly polarized. X-ray polarimetry provides a unique diagnostic to study the location and fundamental mechanisms behind emission processes. The polarization of emissions from a bright celestial X-ray source, the Crab, is reported here for the first time in the hard X-ray band (~20–160 keV). The Crab is a complex system consisting of a central pulsar, a diffuse pulsar wind nebula, as well as structures in the inner nebula including a jet and torus. Measurements are made by a purpose-built and calibrated polarimeter, PoGO+. The polarization vector is found to be aligned with the spin axis of the pulsar for a polarization fraction, PF = (20.9 ± 5.0)%. This is higher than that of the optical diffuse nebula, implying a more compact emission site, though not as compact as, e.g., the synchrotron knot. Contrary to measurements at higher energies, no significant temporal evolution of phase-integrated polarisation parameters is observed. The polarization parameters for the pulsar itself are measured for the first time in the X-ray energy band and are consistent with observations at optical wavelengths.
We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 keV and 80 keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high-energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow field of view (FWHM = 1.25 msr, 2.0 degrees × 2.0 degrees) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (∼228 cm 2 at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm 2 indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a ∼100 mCrab source between 25 keV and 50 keV. A 6 hour observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5σ significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter.Key words: Instrumentation: detectors, Techniques: polarimetric, Pulsars: general, X-ray: binaries, Stars: neutron, Galaxies: active PACS: 95.30. Gv, 95.55.Ka, 95.55.Qf, 95.75.Hi, 95.85.Pw, 97.60Gv, 97.60.Lf, 97.80.Jp, 98.54.Cm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.