Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6-hydrazinopyridine-3-carboxylic acid-Ser3-octreotate (HYNIC-SATE) radiolabeled with 99mTc, using ethylenediamine-N,N'-diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)-positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc-HYNIC-SATE was studied in SSTR2-expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague-Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor-bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC-SATE IC50=1.60±0.05 n m) and specific internalization into rat C6 cells. After administration of 99mTc-HYNIC-SATE in C6 glioma-bearing rats, a receptor specific uptake of radioactivity was observed in SSTR-positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc-HYNIC-SATE is a new receptor-specific radiopeptide for targeting SSTR2-positive brain tumor and might be of great promise in the scintigraphy of SSTR2-positive tumors.
Peptides are attracting increasing interest in nuclear oncology for targeted tumor diagnosis and therapy. We therefore synthesized new cyclic octapeptides conjugated with HYNIC by Fmoc solid-phase peptide synthesis. These were purified and analyzed by RP-HPLC, MALDI mass, (1)H NMR, (13)C NMR, HSQC, HMBC, COSY and IR spectroscopy. Conformational analysis of the peptides was performed by circular dichroism spectroscopy, in pure water and trifluoroethanol-water (1:1), revealed the presence of strong secondary structural features like β-sheet and random coils. Labeling was performed with (99m)Tc using Tricine and EDDA as coligands by SnCl(2) method to get products with excellent radiochemical purity >99.5 %. Metabolic stability analysis did not show any evidence of breaking of the labeled compounds and formation of free (99m)Tc. Internalization studies were done and IC(50) values were determined in somatostatin receptor-expressing C6 glioma cell line and rat brain cortex membrane, and the results compared with HYNIC-TOC as standard. The IC(50) values of (99m)Tc-HYNIC-His(3)-Octreotate (21 ± 0.93 nM) and (99m)Tc-HYNIC-TOC (2.87 ± 0.41 nM) proved to be comparable. Biodistribution and image study on normal rat under gamma camera showed very high uptake in kidney and urine, indicating kidney as primary organ for metabolism and route of excretion. Biodistribution and image study on rats bearing C6 glioma tumor found high uptake in tumor (1.27 ± 0.15) and pancreas (1.71 ± 0.03). Using these findings, new derivatives can be prepared to develop (99m)Tc radiopharmaceuticals for imaging somatostatin receptor-positive tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.