BackgroundTraditionally, Grewia optiva is widely used for the treatment of many diseases like dysentery, fever, typhoid, diarrhea, eczema, smallpox, malaria and cough.MethodsShade-dried roots of G. optiva were extracted with methanol. Based on HPLC results, chloroform and ethyl acetate fractions were subjected to silica column isolation and four compounds: glutaric acid (V), 3,5 dihydroxy phenyl acrylic acid (VI), (2,5 dihydroxy phenyl) 3',6',8'-trihydroxyl-4H chromen-4'-one (VII) and hexanedioic acid (VIII) were isolated in pure form. Ellman’s assay was used to determine the anticholinesterase potential of isolated compounds while their antioxidant potential was estimated by DPPH and ABTS scavenging assays.ResultsAmongst the isolated compounds, VI and VII exhibited excellent percent inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) (83.23±1.11, 82.72±2.20 and 82.11±2.11, 82.23±1.21, respectively, at 1000 µg/mL) with IC50 of 76, 90, 78 and 92 µg/mL, respectively. Highest percent radicals scavenging against DPPH and ABTS (87.41±1.20 and 86.13±2.31) with IC50 of 64 and 65 µg/mL, respectively, were observed for compound VII. Molecular docking studies also supported the binding of compound VI and VII with the target enzyme. The para-hydroxyl group of the phenolic moiety is formed hydrogen bonds with the active site water molecule and the side chain carbonyl and hydroxyl residues of enzyme.ConclusionThe isolated compounds inhibited the DPPH and ABTS-free radicals, and AChE and BChE enzymes. It was concluded that these compounds could be used in relieving the oxidative stress and pathological symptoms associated with excessive hydrolysis of acetyl and butyryl choline. The results of the study were supported by docking studies for compounds VI and VII.
BackgroundIn this study, 2 symmetrical and 3 unsymmetrical thioureas were synthesized to evaluate their antioxidant, antibacterial, antidiabetic, and anticholinesterase potentials.MethodsThe symmetrical thioureas were synthesized in aqueous media in the presence of sunlight, using amines and CS2 as starting material. The unsymmetrical thioureas were synthesized using amines as a nucleophile to attack the phenyl isothiocyanate (electrophile). The structures of synthesized compounds were confirmed through H1 NMR. The antioxidant potential was determined using DPPH and ABTS assays. The inhibition of glucose-6-phosphatase, alpha amylase, and alpha glucosidase by synthesized compounds was used as an indication of antidiabetic potential. Anticholinesterase potential was determined from the inhibition of acetylcholinesterase and butyrylcholinesterase by the synthesized compounds.ResultsThe highest inhibition of glucose-6-phosphatase was shown by compound V (03.12 mg of phosphate released). Alpha amylase was most potently inhibited by compound IV with IC50 value of 62 µg/mL while alpha glucosidase by compound III with IC50 value of 75 µg/mL. The enzymes, acetylcholinesterase, and butyrylcholinesterase were potently inhibited by compound III with IC50 of 63 µg/mL and 80 µg/mL respectively. Against DPPH free radical, compound IV was more potent (IC50 = 64 µg/mL) while ABTS was more potently scavenged by compound I with IC50 of 66 µg/mL. The antibacterial spectrum of synthesized compounds was determined against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Agrobacterium tumefaction and Proteus vulgaris). Compound I and compound II showed maximum activity against A. tumefaction with MIC values of 4.02 and 4.04 µg/mL respectively. Against P. vulgaris, compound V was more active (MIC = 8.94 µg/mL) while against S. aureus, compound IV was more potent with MIC of 4.03 µg/mL.ConclusionFrom the results, it was concluded that these compounds could be used as antibacterial, antioxidant, and antidiabetic agents. However, further in vivo studies are needed to determine the toxicological effect of these compounds in living bodies. The compounds also have potential to treat neurodegenerative diseases.
Escherichia albertii is characterized as an emerging pathogen, causing enteric infections. It is responsible for high mortality rate, especially in children, elderly, and immunocompromised people. To the best of our knowledge, no vaccine exists to curb this pathogen. Therefore, in current study, we aimed to identify potential vaccine candidates and design chimeric vaccine models against Escherichia albertii from the analysis of publicly available data of 95 strains, using a reverse vaccinology approach. Outer-membrane proteins (n = 4) were identified from core genome as vaccine candidates. Eventually, outer membrane Fimbrial usher (FimD) protein was selected as a promiscuous vaccine candidate and utilized to construct a potential vaccine model. It resulted in three epitopes, leading to the design of twelve vaccine constructs. Amongst these, V6 construct was found to be highly immunogenic, non-toxic, non-allergenic, antigenic, and most stable. This was utilized for molecular docking and simulation studies against six HLA and two TLR complexes. This construct can therefore be used for pan-therapy against different strains of E. albertii and needs to be tested in vitro and in vivo.
The production and up-regulation of inflammatory mediators are contributing factors for the development and maintenance of neuropathic pain. In the present study, the post-treatment of synthetic 1,3,4 oxadiazole derivative (B3) for its neuroprotective potential in chronic constriction injury-induced neuropathic pain was applied. In-silico studies were carried out through Auto Dock, PyRx, and DSV to obtain the possible binding and interactions of the ligands (B3) with COX-2, IL-6, and iNOS. The sciatic nerve of the anesthetized rat was constricted with sutures 3/0. Treatment with 1,3,4-oxadiazole derivative was started a day after surgery and continued until the 14th day. All behavioral studies were executed on day 0, 3rd, 7th, 10th, and 14th. The sciatic nerve and spinal cord were collected for further molecular analysis. The interactions in the form of hydrogen bonding stabilizes the ligand target complex. B3 showed three hydrogen bonds with IL-6. B3, in addition to correcting paw posture/deformation induced by CCI, attenuates hyperalgesia (p < 0.001) and allodynia (p < 0.001). B3 significantly raised the level of GST and GSH in both the sciatic nerve and spinal cord and reduced the LPO and iNOS (p < 0.001). B3 attenuates the pathological changes induced by nerve injury, which was confirmed by H&E staining and IHC examination. B3 down-regulates the over-expression of the inflammatory mediator IL-6 and hence provides neuroprotective effects in CCI-induced pain. The results demonstrate that B3 possess anti-nociceptive and anti-hyperalgesic effects and thus minimizes pain perception and inflammation. The possible underlying mechanism for the neuroprotective effect of B3 probably may be mediated through IL-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.