We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation-negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2-3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers.
We screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and two in controls (P = 0.0047). The results demonstrate that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% confidence interval (c.i.) = 1.51-3.78, P = 0.0003). There was no evidence that other classes of ATM variant confer a risk of breast cancer.
Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.
BackgroundMutations in BRCA2 cause a higher risk of early-onset aggressive prostate cancer (PrCa). The IMPACT study is evaluating targeted PrCa screening using prostate-specific-antigen (PSA) in men with germline BRCA1/2 mutations.ObjectiveTo report the utility of PSA screening, PrCa incidence, positive predictive value of PSA, biopsy, and tumour characteristics after 3 yr of screening, by BRCA status.Design, setting, and participantsMen aged 40–69 yr with a germline pathogenic BRCA1/2 mutation and male controls testing negative for a familial BRCA1/2 mutation were recruited. Participants underwent PSA screening for 3 yr, and if PSA > 3.0 ng/ml, men were offered prostate biopsy.Outcome measurements and statistical analysisPSA levels, PrCa incidence, and tumour characteristics were evaluated. Statistical analyses included Poisson regression offset by person-year follow-up, chi-square tests for proportion t tests for means, and Kruskal-Wallis for medians.Results and limitationsA total of 3027 patients (2932 unique individuals) were recruited (919 BRCA1 carriers, 709 BRCA1 noncarriers, 902 BRCA2 carriers, and 497 BRCA2 noncarriers). After 3 yr of screening, 527 men had PSA > 3.0 ng/ml, 357 biopsies were performed, and 112 PrCa cases were diagnosed (31 BRCA1 carriers, 19 BRCA1 noncarriers, 47 BRCA2 carriers, and 15 BRCA2 noncarriers). Higher compliance with biopsy was observed in BRCA2 carriers compared with noncarriers (73% vs 60%). Cancer incidence rate per 1000 person years was higher in BRCA2 carriers than in noncarriers (19.4 vs 12.0; p = 0.03); BRCA2 carriers were diagnosed at a younger age (61 vs 64 yr; p = 0.04) and were more likely to have clinically significant disease than BRCA2 noncarriers (77% vs 40%; p = 0.01). No differences in age or tumour characteristics were detected between BRCA1 carriers and BRCA1 noncarriers. The 4 kallikrein marker model discriminated better (area under the curve [AUC] = 0.73) for clinically significant cancer at biopsy than PSA alone (AUC = 0.65).ConclusionsAfter 3 yr of screening, compared with noncarriers, BRCA2 mutation carriers were associated with a higher incidence of PrCa, younger age of diagnosis, and clinically significant tumours. Therefore, systematic PSA screening is indicated for men with a BRCA2 mutation. Further follow-up is required to assess the role of screening in BRCA1 mutation carriers.Patient summaryWe demonstrate that after 3 yr of prostate-specific antigen (PSA) testing, we detect more serious prostate cancers in men with BRCA2 mutations than in those without these mutations. We recommend that male BRCA2 carriers are offered systematic PSA screening.
BackgroundBRCA1 and BRCA2 mutations have been associated with prostate cancer (PCa) risk but a wide range of risk estimates have been reported that are based on retrospective studies.ObjectiveTo estimate relative and absolute PCa risks associated with BRCA1/2 mutations and to assess risk modification by age, family history, and mutation location.Design, setting, and participantsThis was a prospective cohort study of male BRCA1 (n = 376) and BRCA2 carriers (n = 447) identified in clinical genetics centres in the UK and Ireland (median follow-up 5.9 and 5.3 yr, respectively).Outcome measurements and statistical analysisStandardised incidence/mortality ratios (SIRs/SMRs) relative to population incidences or mortality rates, absolute risks, and hazard ratios (HRs) were estimated using cohort and survival analysis methods.Results and limitationsSixteen BRCA1 and 26 BRCA2 carriers were diagnosed with PCa during follow-up. BRCA2 carriers had an SIR of 4.45 (95% confidence interval [CI] 2.99–6.61) and absolute PCa risk of 27% (95% CI 17–41%) and 60% (95% CI 43–78%) by ages 75 and 85 yr, respectively. For BRCA1 carriers, the overall SIR was 2.35 (95% CI 1.43–3.88); the corresponding SIR at age <65 yr was 3.57 (95% CI 1.68–7.58). However, the BRCA1 SIR varied between 0.74 and 2.83 in sensitivity analyses to assess potential screening effects. PCa risk for BRCA2 carriers increased with family history (HR per affected relative 1.68, 95% CI 0.99–2.85). BRCA2 mutations in the region bounded by positions c.2831 and c.6401 were associated with an SIR of 2.46 (95% CI 1.07–5.64) compared to population incidences, corresponding to lower PCa risk (HR 0.37, 95% CI 0.14–0.96) than for mutations outside the region. BRCA2 carriers had a stronger association with Gleason score ≥7 (SIR 5.07, 95% CI 3.20–8.02) than Gleason score ≤6 PCa (SIR 3.03, 95% CI 1.24–7.44), and a higher risk of death from PCa (SMR 3.85, 95% CI 1.44–10.3). Limitations include potential screening effects for these known mutation carriers; however, the BRCA2 results were robust to multiple sensitivity analyses.ConclusionsThe results substantiate PCa risk patterns indicated by retrospective analyses for BRCA2 carriers, including further evidence of association with aggressive PCa, and give some support for a weaker association in BRCA1 carriers.Patient summaryIn this study we followed unaffected men known to carry mutations in the BRCA1 and BRCA2 genes to investigate whether they are at higher risk of developing prostate cancer compared to the general population. We found that carriers of BRCA2 mutations have a high risk of developing prostate cancer, particularly more aggressive prostate cancer, and that this risk varies by family history of prostate cancer and the location of the mutation within the gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.