Symbolic dynamic filtering (SDF) has been recently reported in literature as a pattern recognition tool for early detection of anomalies (i.e., deviations from the nominal behavior) in complex dynamical systems. This paper presents a review of SDF and its performance evaluation relative to other classes of pattern recognition tools, such as Bayesian Filters and Artificial Neural Networks, from the perspectives of: (i) anomaly detection capability, (ii) decision making for failure mitigation and (iii) computational efficiency. The evaluation is based on analysis of time series data generated from a nonlinear active electronic system.
Degradation monitoring is of paramount importance to safety and reliability of aircraft operations and also for timely maintenance of its critical components. This two-part paper formulates and validates a novel methodology of degradation monitoring of aircraft gas turbine engines with emphasis on detection and isolation of incipient faults. In a complex system with multiple interconnected components (e.g. an aircraft engine), fault isolation becomes a crucial task because of possible input-output and feedback interactions among the individual components. This paper, which is the first of two parts, presents the underlying concepts of fault detection and isolation (FDI) in complex dynamical systems. The FDI algorithms are formulated in the setting of symbolic dynamic filtering (SDF) that has been recently reported in literature. The underlying concept of SDF is built upon the principles of symbolic dynamics, statistical pattern recognition, and information theory. In addition to abrupt large faults, the SDF-based algorithms are capable of detecting slowly evolving anomalies (i.e. deviations from the nominal behaviour) based on analysis of time series data of critical process variables of different engine components. The second part, which is a companion paper, validates the concept, laid out in the first part, on the simulation test bed of a generic two-spool turbofan aircraft engine model for detection and isolation of incipient faults.
Loss-of-Control (LOC) is a major factor in fatal aircraft accidents. Although denitions of LOC remain vague in analytical terms, it is generally associated with ight outside of the normal ight envelope, with nonlinear inuences, and with a signicantly diminished capability of the pilot to control the aircraft. Primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. This paper examines how these nonlinearities aect the ability to control the aircraft and how they may contribute to loss-of-control. Specically, the ability to regulate an aircraft around stall points is considered, as is the question of how damage to control eectors impacts the capability to remain within an acceptable envelope and to maneuver within it. It is shown that even when a sucient set of steady motions exist, the ability to regulate around them or transition between them can be dicult and nonintuitive, particularly for impaired aircraft. Examples are provided using NASA's Generic Transport Model.
This paper proposes a feature extraction and fusion methodology to perform fault detection and classification in distributed physical processes generating heterogeneous data. The underlying concept is built upon a semantic framework for multi-sensor data interpretation using graphical models of Probabilistic Finite State Automata (PFSA). While the computational complexity is reduced by pruning the fused graphical model using an information-theoretic approach, the algorithms are developed to achieve high reliability via retaining the essential spatiotemporal characteristics of the physical processes. The concept has been validated on a simulation test bed of distributed shipboard auxiliary systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.