FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational modifications (PTMs) and protein–protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential, and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings and overview of the current understanding of the influence of FOXO3a in cancer development and progression.
Accumulation of both interstitial myofibroblasts and excessive production of extracellular matrix proteins is a common pathway contributing to chronic kidney disease. In a number of tissues, activation of STAT3 (signal transducer and activator of transcription 3) increases expression of multiple profibrotic genes. Here, we examined the effect of a STAT3 inhibitor, S3I-201, on activation of renal interstitial fibroblasts and progression of renal fibrosis. Treatment of cultured rat renal interstitial fibroblasts with S3I-201 inhibited their activation, as evidenced by dose- and time-dependent blockade of alpha-smooth muscle actin and fibronectin expression. In a mouse model of renal interstitial fibrosis induced by unilateral ureteral obstruction, STAT3 was activated, and administration of S3I-201 attenuated both this activation and extracellular matrix protein deposition following injury. S3I-201 reduced infiltration of the injured kidney by inflammatory cells and suppressed the injury-induced expression of fibronectin, alpha-smooth muscle actin, and collagen type-1 proteins, as well as the expression of multiple cytokines. Furthermore, S3I-201 inhibited proliferation and induced apoptosis preferentially in renal interstitial fibroblasts of the obstructed kidney. Thus, our results suggest that increased STAT3 activity mediates activation of renal interstitial fibroblasts and the progression of renal fibrosis. Inhibition of STAT3 signaling with S3I-201 may hold therapeutic potential for fibrotic kidney diseases.
Circular RNAs (circRNAs) have important roles in several cellular processes. No study has established the pathophysiological role for circRNAs in the heart. Here, we show that a circRNA (mitochondrial fission and apoptosis-related circRNA (MFACR)) regulates mitochondrial fission and apoptosis in the heart by directly targeting and downregulating miR-652-3p; this in turn blocks mitochondrial fission and cardiomyocyte cell death by suppressing MTP18 translation. MTP18 deficiency reduces mitochondrial fission and suppresses cardiomyocyte apoptosis and MI. miR-652-3p directly downregulates MTP18 and attenuates mitochondrial fission, cardiomyocyte apoptosis, and MI in vitro and in vivo. MFACR directly sequesters miR-652-3p in the cytoplasm and inhibits its activity. MFACR knockdown in cardiomyocytes and mice attenuates mitochondrial fission and MI. Our results reveal a crucial role for circRNA in regulating mitochondrial dynamics and apoptosis in the heart; as such, circRNAs may serve as a potential therapeutic avenue for cardiovascular diseases.
Activation of renal interstitial fibroblasts is critically involved in the development of tubulointerstitial fibrosis in chronic kidney diseases. In this study, we investigated the effect of trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, on the activation of renal interstitial fibroblasts in a rat renal interstitial fibroblast line (NRK-49F) and the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) . α-Smooth muscle actin (α-SMA) and fibronectin, two hallmarks of fibroblast activation, were highly expressed in cultured NRK-49F cells, and their expression was inhibited in the presence of TSA. Similarly, administration of TSA suppressed the expression of α-SMA and fibronectin and attenuated the accumulation of renal interstitial fibroblasts in the kidney after the obstructive injury. Activation of renal interstitial fibroblasts was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3), and TSA treatment also abolished these responses. Furthermore, inhibition of the STAT3 pathway with AG490 inhibited expression of α-SMA and fibronectin in NRK-49F cells. Finally, TSA treatment inhibited tubular cell apoptosis and caspase-3 activation in the obstructive kidney. Collectively, we suggest that pharmacological HDAC inhibition may induce antifibrotic activity by inactivation of renal interstitial fibroblasts and inhibition of renal tubular cell death. STAT3 may mediate those actions of HDACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.