Textile-based piezoelectric nanogenerator generates electrical energy from human motion. Here a novel type of textile-based piezoelectric nanogenerator is reported which is fabricated using the growth of silver-doped zinc oxide on carton fabric. Along with the optical and structural characterization of silver-doped zinc oxide nanorods, the electrical characterization was also performed for silver-doped zinc oxide piezoelectric nanogenerator. The silver-doped zinc oxide piezoelectric nanogenerator was found to generate three times greater power compared to undoped zinc oxide piezoelectric nanogenerator. By applying external mechanical force of 3 kgf and 31 MΩ of load resistance, the silver-doped zinc oxide piezoelectric nanogenerator generated an output power density of 1.45 mW cm−2. The effect of load resistance and load capacitor was determined and optimum values were calculated. The maximum output power was observed at a load resistance of 31 MΩ. The silver-doped zinc oxide piezoelectric nanogenerator was utilized to charge load capacitors and found that maximum energy could be stored at optimum load capacitance of 22 nF in 600 s (1800 cycles). This research may provide the opportunity to design high-output textile-based nanogenerators for practical applications like powering portable devices and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.