During early human pregnancy, the fetal placenta implants into the uterine mucosa (decidua)where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblastdecidual interactions underlie common diseases of pregnancy including pre-eclampsia and stillbirth. Here, we profile transcriptomes of ~70,000 single cells from first trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals new subsets of perivascular and stromal cells, which are located in distinct decidual layers.There are three major subsets of decidual NK cells, with distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes (https://cellphonedb.org/) and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. This identifies many regulatory interactions that prevent any damaging innate or adaptive immune responses in this environment. Our single cell atlas of the maternal-fetal interface reveals the cellular organization and interactions critical for placentation and reproductive success.During early pregnancy, the uterine mucosal lining, the endometrium, is transformed into decidua under the influence of progesterone. Decidualisation results from a complex and well-orchestrated differentiation program that involves all cellular elements of the mucosa: stromal, glandular, and immune cells, including the distinctive decidual Natural Killer cells (dNK) 1,2 . The blastocyst implants into the decidua and initially, before arterial connections are established, uterine glands are the source of histotrophic nutrition in the placenta 3,4 . Following implantation, placental extravillous trophoblast cells (EVT) invade through the decidua and move towards the spiral arteries, where they destroy the smooth muscle media and transform the arteries into high conductance vessels 5 . Balanced regulation of EVT invasion is critical to pregnancy success: arteries must be sufficiently transformed, but excessive invasion prevented, to ensure correct allocation of resources to both mother and baby 6 . The pivotal regulatory role of the decidua is obvious from the life-threatening, uncontrolled, trophoblast invasion that occurs when the decidua is absent as when the placenta implants on a previous cesarean section scar 7 .EVT have a unique HLA profile: they do not express the dominant T cell ligands, class I HLA-A and HLA-B or class II molecules 8,9 , but do express HLA-G and HLA-E and polymorphic HLA-C class I molecules. These trophoblast HLA ligands have receptors expressed by the dominant decidual immune cells, dNK, including maternal killer immunoglobulin-like receptors (KIR), that bind HLA-C molecules 10,11 . Certain combinations of maternal KIR and fetal HLA-C genetic variants are associated with pregnancy disorders such as pre-eclampsia, where trophoblast invasion is deficient 12 . However, detailed understanding of the cellular interactions in the decidua supporting early...
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells/multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Using single cell transcriptome profiling of ~140,000 liver and ~74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the impact of tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, NK and ILC precursors in the yolk sac. We demonstrate a shift in fetal liver haematopoietic composition during gestation away from being erythroid-predominant, accompanied by a parallel change in HSC/MPP differentiation potential, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a valuable reference for harnessing the therapeutic potential of HSC/MPPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.