In this paper we present a two-steps approach towards the creation of affective Embodied Conversational Agents (ECAs): annotation of a real-life non-acted emotional corpus and animation by copy-synthesis. The basis of our approach is to study how coders perceive and annotate at several levels the emotions observed in a corpus of emotionally rich TV video interviews. We use their annotations to specify the expressive behavior of an agent at several levels. We explain how such an approach can be useful for providing knowledge as input for the specification of non-basic patterns of emotional behaviors to be displayed by the ECA (e.g. which perceptual cues and levels of annotation are required for enabling the proper recognition of the emotions).
Abstract. Due to the large amount of data generated by user interactions on the Web, some companies are currently innovating in the domain of data management by designing their own systems. Many of them are referred to as NoSQL databases, standing for 'Not only SQL'. With their wide adoption will emerge new needs and data integration will certainly be one of them. In this paper, we adapt a framework encountered for the integration of relational data to a broader context where both NoSQL and relational databases can be integrated. One important extension consists in the efficient answering of queries expressed over these data sources. The highly denormalized aspect of NoSQL databases results in varying performance costs for several possible query translations. Thus a data integration targeting NoSQL databases needs to generate an optimized translation for a given query. Our contributions are to propose (i) an access path based mapping solution that takes benefit of the design choices of each data source, (ii) integrate preferences to handle conflicts between sources and (iii) a query language that bridges the gap between the SQL query expressed by the user and the query language of the data sources. We also present a prototype implementation, where the target schema is represented as a set of relations and which enables the integration of two of the most popular NoSQL database models, namely document and a column family stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.