BackgroundDisrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.ObjectivesThis study evaluates the potential of TRAF-STOP treatment in atherosclerosis.MethodsThe effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe−/−) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages.ResultsTRAF-STOP treatment of young Apoe−/− mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe−/− mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair “classical” immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe−/− mice.ConclusionsTRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.
Our results indicate that small-molecule-mediated inhibition of the CD40-TRAF6 interaction is a promising therapeutic strategy for the treatment of metabolic complications of obesity by improving glucose tolerance, by reducing the accumulation of immune cells to the adipose tissue and by skewing of the immune response towards a more anti-inflammatory profile.
Obesity is associated with chronic low-grade inflammation, characterized by leukocytosis and inflammation in the adipose tissue. Continuous activation of the immune system is a stressor for hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Here we studied how diet-induced obesity (DIO) affects HSPC population dynamics in the BM. Eight groups of age-matched C57Bl/6 mice received a high-fat diet (45% kilocalories from fat) ranging from 1 d up to 18 wk. The obesogenic diet caused decreased proliferation of lineage(-)Sca-1(+)c-Kit(+) (LSK) cells in the BM and a general suppression of progenitor cell populations including common lymphoid progenitors and common myeloid progenitors. Within the LSK population, DIO induced a shift in stem cells that are capable of self-renewal toward maturing multipotent progenitor cells. The higher differentiation potential resulted in increased lymphoid and myeloid ex vivo colony-forming capacity. In a competitive BM transplantation, BM from obese animals showed impaired multilineage reconstitution when transplanted into chow-fed mice. Our data demonstrate that obesity stimulates the differentiation and reduces proliferation of HSPCs in the BM, leading to a decreased HSPC population. This implies that the effects of obesity on HSPCs hampers proper functioning of the immune system.-Van den Berg, S. M., Seijkens, T. T. P., Kusters, P. J. H., Beckers, L., den Toom, M., Smeets, E., Levels, J., de Winther, M. P. J., Lutgens, E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow.
BackgroundThe influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation.MethodsHuman monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice).ResultsWe here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models.ConclusionsTogether, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-017-0875-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.