The capsaicin-sensitive vanilloid receptor (VR1) was recently shown to play an important role in inflammatory pain (hyperalgesia), but the underlying mechanism is unknown. We hypothesized that pain-producing inflammatory mediators activate capsaicin receptors by inducing the production of fatty acid agonists of VR1. This study demonstrates that bradykinin, acting at B2 bradykinin receptors, excites sensory nerve endings by activating capsaicin receptors via production of 12-lipoxygenase metabolites of arachidonic acid. This finding identifies a mechanism that might be targeted in the development of new therapeutic strategies for the treatment of inflammatory pain. V R1, a cloned capsaicin receptor, is a nonspecific cation channel expressed preferentially in small sensory neurons and activated by the vanilloids, capsaicin and resiniferatoxin (1). Because VR1 is also activated by heat and acid (1, 2), it is now considered to be a molecular sensor that detects a variety of painful stimuli. Indeed, recent experiments performed in mice that lack VR1 demonstrated that the receptor is essential for inflammation-induced heat hyperalgesia (3, 4). Therefore, understanding the cellular mechanisms by which capsaicin receptors are activated by inflammatory mediators may be a key to identifying novel therapeutic targets for pain treatment. Because of the presence of VR1 in sensory neurons and an apparent role in inflammatory hyperalgesia, endogenous activators of VR1 have been suspected. We recently demonstrated that products of the lipoxygenase pathway of arachidonic acid (AA) metabolism can activate capsaicin receptors (5). Among the eicosanoids tested, the 12-lipoxygenase product, 12-hydroperoxyeicosatetraenoic acid (12-HPETE), structurally similar to capsaicin, was the most potent VR1 agonist. Thus, metabolic products of lipoxygenases become candidates for the endogenous capsaicinlike substances. However, the upstream signals that stimulate lipoxygenase and activate VR1 are elusive.Bradykinin (BK) is a potent inflammatory mediator that causes pain and hyperalgesia. BK is known to activate as well as sensitize sensory neurons to other stimuli. Various signaling pathways have been suggested to mediate the sensitizing effect of BK on sensory neurons (6, 7). However, activation mechanism by BK is not known. BK is now known to stimulate the production of AA in sensory neurons (8), a key substrate of lipoxygenases. Therefore, on the basis of previous observations that products of lipoxygenase activate VR1 (5), we hypothesized that BK excites sensory neurons by opening the capsaicin receptor via production of 12-lipoxygenase products of AA metabolism. Materials and MethodsCell Culture. Experiments were carried out according to the Ethical Guidelines of the International Association for the Study of Pain and approved by the research ethics committee for the use of animals of the Seoul National University and the University of California, San Francisco. Thoracic and lumbar dorsal root ganglia (DRGs) were dissected from 1-to 2 day-...
ABSTRACT:The purpose of this study is to report the changes of CYP2E1, CYP1A2, CYP2B1/2, CYP2C11, CYP3A23, and CYP3A2 expression and pharmacokinetics and tissue distribution of chlorzoxazone (CZX) and 6-hydroxychlorzoxazone (OH-CZX) in rats with acute renal failure induced by uranyl nitrate (U-ARF), and the role of CYP3A23 and CYP3A2 in the formation of OH-CZX in rats with U-ARF. In rats with U-ARF, CYP2C11 decreased to 20% of control, whereas CYP2E1 and CYP3A23 increased 2.3 and 4 times, respectively, compared with control. But expression of CYP1A2 and CYP2B1/2 was not changed by U-ARF. After i.v. administration of CZX at a dose of 20 mg/kg to rats with U-ARF, the areas under the plasma concentration-time curve from time 0 to time infinity (AUCs) of CZX and OH-CZX were significantly smaller and greater, respectively, than those in control rats. In rats with U-ARF, CZX was below the detection limit at 120 min in all rat tissues studied, whereas it was detected in all tissues of control rats at both 30 and 120 min. However, in control rats, OH-CZX was below the detection limit at both 30 and 120 min in all rat tissues except kidney, whereas it was detected in all tissues of rats with U-ARF at both 30 and 120 min. Based on results from supporting experiments with DDT and 2,2-bis(4-chlorophenyl)1,1-dichloroethylene treatment of rats, the contribution of CYP3A23 and CYP3A2 to the enhanced formation of OH-CZX in rats with U-ARF is likely to be negligible.
Pharmacokinetic profiles of therapeutic agents change in dehydrated animals. The present study was designed to determine the expression of xenobiotic-metabolizing enzymes in the rat liver and the effect of glucose supplementation during water deprivation. Deprivation of water intake, which reduced food intake, resulted in no significant change in the cytochrome P-450 1A2, 2B1/2, 2C11 and 3A1/2 expression. Cytochrome P-450 2E1, however, was three-fold induced with an increase in the mRNA. Rehydration of 48-h water-deprived rats for the next 24 h with free access to foods restored the P-450 2E1 level to that of the control, although rehydration with 20% food supply failed to normalize the P-450 2E1 expression. Water deprivation caused a reduction in the plasma insulin level, which was prevented by rehydration with a sufficient food supply. The plasma insulin level was inversely related to the P-450 2E1 expression. Glucose feeding instead of foods during dehydration prevented P-450 2E1 induction in the absence of recovering the plasma insulin level. Western blot analysis revealed that the hepatic rGSTA2 level was 30% decreased in dehydrated rats, whereas the rGSTA3, M1 and M2 expression was not affected. Suppression of rGSTA2 accompanied a reduction in the mRNA. Glucose feeding further reduced rGSTA2 expression. The data indicated that expression of major P-450s and glutathione S-transferases, except P-450 2E1, was not greatly affected by water deprivation and that the P-450 2E1 induction and a decrease in plasma insulin resulted from the reduction in food intake but not from dehydration per se. Glucose supplementation restored P-450 2E1 expression but further suppressed rGSTA2 expression during water deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.