Interventional neuroradiology (INR) has been a rapidly expanding and advancing clinical area during the past few decades. As the complexity and diversity of INR procedures increases, the demand for anesthesia also increases. Anesthesia for interventional neuroradiology is a challenge for the anesthesiologist due to the unfamiliar working environment which the anesthesiologist must consider, as well as the unique neuro-interventional components. This review provides an overview of the anesthetic options and specific consideration of the anesthesia requirements for each procedure. We also introduce the anesthetic management for interventional neuroradiology performed in our medical institution.
Background Intramuscular dexmedetomidine can be used for pediatric sedation without requiring intravenous access and has advantages for electroencephalography by inducing natural sleep pathway, but only a limited number of studies compared the efficacy of intramuscular dexmedetomidine with oral chloral hydrate. Aims To compare the efficacy and safety of intramuscular dexmedetomidine and oral chloral hydrate used for sedation during electroencephalography in pediatric patients. Methods We reviewed the medical records of pediatric patients who underwent sedation for electroencephalography between January 2015 and December 2016. Initial doses of dexmedetomidine and chloral hydrate were 3 mcg/kg and 50 mg/kg, respectively; second doses (1 mcg/kg and 50 mg/kg, respectively) were administered if adequate sedation was not achieved. Demographic data, time of sedative administration, time of sedation and awakening, and time of arrival at recovery room and discharge were analyzed. Results Out of a total of 1239 patients, 125 patients had received dexmedetomidine and 1114 had received chloral hydrate. After 1:1 propensity score matching, the dexmedetomidine and chloral hydrate groups each had 118 patients. Testing completion rate with a single dose of medication was higher in the dexmedetomidine group (91.5% vs 71.2%; mean difference [95% CI] 20.3 [10.8‐29.9]; P < .0001; Pearson chi‐square value = 16.09). Sedation onset time was shorter in the dexmedetomidine group as well (16.6 ± 13.0 minutes vs 41.5 ± 26.8 minutes; mean difference [95% CI] 24.8 [19.1‐30.6]; P < .0001; T = 8.27). On the contrary, the duration of recovery was longer in the dexmedetomidine group (35.5 ± 40.2 minutes vs 18.5 ± 30.7 minutes; mean difference [95% CI] 18.6 [8.8‐28.5]; P = .0002; T = −2.82). Total residence time was not significantly different between the two groups (125.8 ± 40.6 minutes vs 122.1 ± 42.2 minutes, mean difference [95% CI] 5.21 [6.1‐16.5], P = .3665 T = 0.04). Conclusions Intramuscular dexmedetomidine showed higher sedation success rate and shorter time to achieving the desired sedation level compared with oral chloral hydrate and thus may be an effective alternative for oral chloral hydrate in pediatric patients requiring sedation for electroencephalography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.