It is believed that mouse Fc gamma RIII arose by an evolutionarily recent recombination, which brought together the extracellular domains from Fc gamma RII with the transmembrane/cytoplasmic region from the ancestor Fc gamma RIII. Here, we report identification of a mouse gene encoding a transmembrane receptor that may be regarded as the true ortholog of nonrodent CD16/Fc gamma RIII. Designated CD16-2, the novel protein is highly similar to human Fc gamma RIIIA in the signal peptide (60% identical residues), and in the extracellular domains (65%). Although the similarity between the two proteins is less conspicuous in the transmembrane/cytoplasmic region (54%), it is higher than between human Fc gamma RIIIA and mouse Fc gamma RIII (44%). However, the conserved transmembrane motif LFAVDTGL shared by rodent and human Fc gamma RIII and Fc epsilon RI has two replacements in CD16-2. The CD16-2 gene is tightly linked to the Fc gamma RIII and Fc gamma RII genes and consists of five exons. Northern blot analysis revealed that CD16-2 is expressed in peripheral blood leukocytes, as well as in spleen, thymus, colon and intestine. RT-PCR showed prominent expression in macrophage cell line J774. Based on sequence comparisons, it is suggested that the modern repertoire of the mammalian low affinity Fc receptors has resulted from repetitive duplications and/or recombinations of three ancestral genes.
A novel conserved member of the leukocyte Fc receptor (FcR) family was identified in human and mouse. The presumably secreted protein, designated FCRL (FcR‐like) is comprised of four domains. The three N‐terminal domains are related to the extracellular region of FcγRI, with the second (35–37% residue identity) and the third (46–52%) domains showing highest similarity. The C‐terminaldomain is a unique sequence enriched with proline residues. In humans, alternative transcripts for six FCRL isoforms were revealed. Spleen and tonsils were found to be the major sources of FCRL mRNA in human tissues. Western blotting of tonsil cell lysate using FCRL‐specific antibodies recognized a 44‐kDa protein produced as a monomer containing free sulfhydryl groups. The monomer, however, was able to form disulfide‐linked homo‐oligomer upon oxidation. In COS‐7 cells transiently transfected with two human FCRL isoforms, both resided intracellularly. Immunohistochemical staining of tonsil sections demonstrated the FCRL expression in germinal centers, suggesting that the protein may be implicated in germinal center‐specific stages of B cell development. The phylogenetic analysis of the FCRL relationships with the leukocyte FcR supports a view that the three‐domain structure was primordial in the evolution of the family.
Hepatitis B core antigen is one of the most promising protein carriers of foreign epitopes of various human and animal pathogens. Chimeric HBcAg particles can be used as effective artificial immunogenes. Unfortunately, not all chimeric proteins are able to be particulated. The dependence of correct or incorrect folding of chimeric proteins on physical and chemical properties of inserts was studied with the help of ProAnalyst, SALIX and QSARPro computer programs. We have found that insertion of amino acids with high hydrophobicity, large volume, and high beta-strand index prevent self-assembling chimeric proteins. These factors are most important for the C-termini of inserts. Recommendations for obtaining correct folding of chimeric HBcAg particles have been given.
In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.