Two sorts of proteins bind to, and mediate the developmental and homeostatic effects of, retinoic acid (RA): the RAR and RXR nuclear receptors, which act as ligand-dependent transcriptional regulators, and the cellular RA binding proteins (CRABPI and CRABPII). CRABPs are generally known to be implicated in the synthesis, degradation, and control of steady-state levels of RA, yet previous and recent data have indicated that they could play a role in the control of gene expression. Here we show for the first time that, both in vitro and in vivo, CRABPII is associated with RAR␣ and RXR␣ in a ligand-independent manner in mammalian cells (HL-60, NB-4, and MCF-7). In the nucleus, this protein complex binds the RXR-RAR-specific response element of an RA target gene (RARE-DR5). Moreover, in the presence of retinoids that bind both the nuclear receptors and CRABPII, enhancement of transactivation by RXR␣-RAR␣ heterodimers is observed in the presence of CRABPII. Thus, CRABPII appears to be a novel transcriptional regulator involved in RA signaling.
Blockage in myeloid differentiation characterizes acute myeloid leukemia (AML); the stage of the blockage defines distinct AML subtypes (AML1/2 to AML5). Differentiation therapy in AML has recently raised interest because the survival of AML3 patients has been greatly improved using the differentiating agent retinoic acid. However, this molecule is ineffective in other AML subtypes. The CD44 surface antigen, on leukemic blasts from most AML patients, is involved in myeloid differentiation. Here, we report that ligation of CD44 with specific anti-CD44 monoclonal antibodies or with hyaluronan, its natural ligand, can reverse myeloid differentiation blockage in AML1/2 to AML5 subtypes. The differentiation of AML blasts was evidenced by the ability to produce oxidative bursts, the expression of lineage antigens and cytological modifications, all specific to normal differentiated myeloid cells. These results indicate new possibilities for the development of CD44-targeted differentiation therapy in the AML1/2 to AML5 subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.