We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.
We report the observation of Raman-Ramsey fringes using a double lambda scheme creating coherent population trapping in an atomic ensemble combined with pulsed optical radiations. The observation was made in a Cs vapor mixed with N2 buffer gas in a closed cell. The double lambda scheme is created with lin perpendicular lin polarized laser beams leading to higher contrast than the usual simple lambda scheme. The pulsed trapping technique leads to narrow fringe widths scaling as 1/(2T) with high contrasts which are no longer limited by the saturation effect. This technique operates in a different way from the classical Ramsey sequence: the signal is done by applying a long trapping pulse to prepare the atomic state superposition, and fringe detection is accomplished by optical transmission during a short second trapping pulse without any perturbation of the dark state.
We investigated the influence of some critical parameters and operating conditions such as cell temperature, laser intensity, and interrogation technique affecting the performances of a gas cell Cs frequency standard based on coherent population trapping (CPT). Thanks to an original experimental setup, the atoms can be trapped in the dark state and interrogated using continuous wave (CW) or pulsed coherent optical radiations. Using a double-lambda scheme, a signal contrast as high as 52% has been measured in the continuous regime for an optimum cell temperature of 35 degrees C. Compared with the conventional continuous CPT interrogation, the pulsed interrogation technique reduces the light shift by a factor of 300 and allowed it to reach high-frequency stability for higher laser intensities. The frequency stability has been measured to be 9 x 10(-13) for a 1 s integration time. Main noise contributions limiting the short-term and medium-term frequency stability are reviewed and estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.