Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.
A sudden increase in the rate at which material reaches the most internal part of an accretion disk, i.e. the boundary layer, can change its structure dramatically. We have witnessed such change for the first time in the symbiotic recurrent nova T CrB. Our analysis of XMM-Newton, Swift Burst Alert Telescope (BAT)/ X-Ray Telescope (XRT) / UltraViolet Optical Telescope (UVOT) and American Association of Variable Stars Observers (AAVSO) V and B-band data indicates that during an optical brightening event that started in early 2014 (∆V≈1.5): (i) the hard X-ray emission as seen with BAT almost vanished; (ii) the XRT X-ray flux decreased significantly while the optical flux remained high; (iii) the UV flux increased by at least a factor of 40 over the quiescent value; and (iv) the X-ray spectrum became much softer and a bright, new, blackbody-like component appeared. We suggest that the optical brightening event, which could be a similar event to that observed about 8 years before the most recent thermonuclear outburst in 1946, is due to a disk instability.
Aims. Only for very few β Cephei stars has the behaviour of the magnetic field been studied over the rotation cycle. During the past two years we have obtained multi-epoch polarimetric spectra of the β Cephei star V1449 Aql with SOFIN at the Nordic Optical Telescope to search for a rotation period and to constrain the geometry of the magnetic field. Methods. The mean longitudinal magnetic field is measured at 13 different epochs. The new measurements, together with the previous FORS 1 measurements, have been used for the frequency analysis and the characterization of the magnetic field. Results. V1449 Aql so far possesses the strongest longitudinal magnetic field of up to 700 G among the β Cephei stars. The resulting periodogram displays three dominant peaks with the highest peak at f = 0.0720 d −1 corresponding to a period P = 13. d 893. The magnetic field geometry can likely be described by a centred dipole with a polar magnetic field strength B d around 3 kG and an inclination angle β of the magnetic axis to the rotation axis of 76 ± 4 • . As of today, the strongest longitudinal magnetic fields are detected in the β Cephei stars V1449 Aql and ξ 1 CMa with large radial velocity amplitudes. Their peak-to-peak amplitudes reach ∼90 km s −1 and ∼33 km s −1 , respectively. Concluding, we briefly discuss the position of the currently known eight magnetic β Cephei and candidate β Cephei stars in the Hertzsprung-Russell (H-R) diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.