The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
A study of the P 11 (1440) The transition helicity amplitudes from the proton ground state to the P11(1440) and D13(1520) excited states (γvpN * electrocouplings) were determined from the analysis of nine independent onefold differential π + π − p electroproduction cross sections off a proton target, taken with CLAS at photon virtualities 0.25 GeV 2 < Q 2 < 0.60 GeV 2 . The phenomenological reaction model was employed for separation of the resonant and non-resonant contributions to the final state. The P11(1440) and D13(1520) electrocouplings were obtained from the resonant amplitudes parametrized within the framework of a unitarized Breit-Wigner ansatz. They are consistent with results obtained in the previous CLAS analyses of the π + n and π 0 p channels. The successful description of a large body of data in dominant meson-electroproduction channels off protons with the same γvpN * electrocouplings offers clear evidence for the reliable extraction of these fundamental quantities from meson-electroproduction data. This analysis also led to the determination of the long-awaited hadronic branching ratios for the D13(1520) decay into ∆π (24%-32%) and N ρ (8%-17%).
The reaction γ + p → K + + Σ + π was used to determine the invariant mass distributions or "line shapes" of the Σ + π − , Σ − π + and Σ 0 π 0 final states, from threshold at 1328 MeV/c 2 through the mass range of the Λ(1405) and the Λ(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I = 0 Λ(1405), indicating the presence of substantial I = 1 strength in the reaction. Background contributions to the data from the Σ 0 (1385) and from K * Σ production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NK threshold. A best fit to all the data was obtained after including a phenomenological I = 1, J P = 1/2 − amplitude with a centroid at 1394 ± 20 MeV/c 2 and a second I = 1 amplitude at 1413 ± 10 MeV/c 2 . The centroid of the I = 0 Λ(1405) strength was found at the Σπ threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c 2 .
We report measurements of the photon beam asymmetry Σ for the reactions γp → pπ 0 and γp → pη from the GLUEX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π 0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.