This paper is dedicated to the memory of Professor Guido Altarelli who sadly passed away as it went to press. The results which it presents are founded on the principles and the formalism which he developed in his pioneering theoretical work on Quantum Chromodynamics in deep-inelastic lepton-nucleon scattering nearly four decades ago rent e ± p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb −1 and span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixedflavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α s (M 2 Z ) = 0.1183 ± 0.0009(exp) ± 0.0005(model/parameterisation) ± 0.0012(hadronisation) and results on electroweak unification and scaling violations are also presented.
H1 and ZEUS
A: The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic τ decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions. 3 Reconstruction of the particle-flow elements 9 3.1 Charged-particle tracks and vertices 9 3.1.
2018 JINST 13 P05011 8.5 Measurement of the data-to-simulation scale factors as a function of the discriminator value 76 8.6 Comparison of the measured data-to-simulation scale factors 79 9 Measurement of the tagging efficiency for boosted topologies 82 9.1 Comparison of data with simulation 82 9.2 Efficiency for subjets 83 9.2.1 Misidentification probability 83 9.2.2 Measurement of the b tagging efficiency 84 9.3 Efficiency of the double-b tagger 86 9.3.1 Measurement of the double-b tagging efficiency 86 9.3.2 Measurement of the misidentification probability for top quarks 87
New sets of parameters (“tunes”) for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton () data at and to UE proton–antiproton () data from the CDF experiment at lower , are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to “minimum bias” (MB) events, multijet, and Drell–Yan ( lepton-antilepton+jets) observables at 7 and 8, as well as predictions for MB and UE observables at 13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.